SCHEDULE FREE WEB DEMO

T-Shaped Diaphragm Wall in Taiwan - Review Options in DeepEX Software

Performance of T-Shaped Diaphragm Wall Excavation in Taiwan

The performance of a T-shaped diaphragm wall supported 9.7m deep excavation in Taiwan is compared to an analysis with our DeepEX software. The original excavation performance was presented in a paper by H. Hsii Sheng Hsieh, et. al., 2011 (Journal of Geoengineering Vol. 6). The deep excavation was supported by T-shaped diaphragm wall with partial implementation of the top-down bracing method, Figure 1 presents a plan of the excavation as reproduced from the original publication.

Diaphragm wall excavation plan in Taiwan with instrumentation

Figure 1: Diaphragm wall excavation plan with instrumentation

On the eastern project boundary a series of buildings were abating the excavation. Groundwater was located at a depth of 5m. Construction sequence involved the following phases:

A) Construction of the diaphragm T-wall.

B) Excavation with berms to the final subgrade within the site center. Berms were maintained at a 1 to 1 slope.

C) Partial construction of the building within the excavation

D) Extension of the 1st basement level floor slab to support the diaphragm walls

E) Removal of the soil berms to the final excavation subgrade

F) Completion of building basement

The initial geotechnical investigation did not establish any sort of guidelines or soil design parameters. For this reason the authors resorted to a series of parametric analyses. Their initial analyses indicated maximum displacements of the wall as much as 60mm, that could be reduced to approximately 25mm if greater soil strength was assumed. The authors then attributed the better behavior to possible sliding resistance and 3D mass effects of the T panel. Figure 2 presents an a project picture during the soil berm excavation and before the building core was constructed.

T-panel diaphragm wall excavation during berm excavation

Figure 2: Diaphragm wall excavation during the berm phase before the supporting basement floor slab was constructed

Upon review of the case history data we realized that construction of the 1 to 1 soil berms meant that the gravely-sandy soils on the site had considerably greater strength than what was stipulated in the original publication. This observation was further supported by Figure 2, where, in the background we can observe that the natural soils were standing at slopes greater than 45 degrees. We thus assumed sufficient soil strength that would in theory justify the observed stability of the 1 to 1 soil berm.

We then proceeded with these assumptions and simulated the excavation with our DeepEX software. This modelling included the T-panel diaphragm walls, the berm excavation, the building, and the basement floor slab. With our first run we were able to get lateral displacements that practically matched the measured wall displacements. Figures 2 & 3 show the DeepEX models with lateral displacements, bending moments, and lateral soil stresses for the phase B) and phase E). From the results we can see that the E-W displacement difference was captured extremely well in our DeepEX analysis. Figure 4 presents critical inclinometer displacement results that compare extremely well with our DeepEX analysis.

Cantilever diaphragm wall excavation stage with DeepEX in Taiwan

Figure 3: Cantilever diaphragm wall excavation with T-panels in DeepEX

Diaphragm wall excavation in Taiwan with DeepEX software

Figure 4: Final excavation phase with building core and basement slab with DeepEX

Diaphragm wall displacements for t-panels in Taiwan

Figure 5: Reported measured lateral wall displacements

DeepEX Software Can Design any Deep Excavation Model in Minutes!

Analyze Deep Excavations with All Methods: Limit Equilibrium - Non-Linear - Finite Element Analysis!

Design Anchored Walls, Braced Excavations, Cofferdams, Deadman Wall Systems, Top-Down + more!

AASHTO LRFD, CALTRANS, EUROCODES 2, 3, 7, 8, ACI, BS, Australian Codes, Chinese Codes +more!

Review DeepEX Capabilities

Solutions for Geotechnical Engineering Professionals:

Logo_DeepEX.png

DeepEX

Shoring
Design
Software

Learn More

dfnd.jpg

DeepFND

Pile Foundations
Design
Software

Learn More

HP.jpg

HelixPile

Helical Piles
Design
Software

Learn More

SP.jpg

SnailPlus

Soil Nail Walls
Design
Software

Learn More

Trusted By

1. Logo Arup.JPG
2. Logo Keller.JPG
3. Logo PBA.JPG
4. Logo AECOM.JPG
5. Logo Hatch.JPG
6. Logo Mottmac.JPG
7. Logo Jacobs.JPG
8. Logo GZA.JPG
9. Logo GarretFlaming.JPG
10. Logo Lavalin.JPG
11. Logo Magnusson Klem.JPG
12. Logo MoDOT.JPG
13. Logo URS.JPG
14. Logo Stalworth.JPG
15. Logo Kleinfelder.JPG
16. Logo Samsung.JPG
17. Logo Gepfreeze.JPG
37._Logo_ASAP.jpg
19. Logo GulfConstruct.JPG
20. Logo Temeltas.JPG
21. Logo AttikoMetro.JPG
22. Logo Flatiron.JPG
23. Logo Kozaba.JPG
24. Logo Siefert.JPG
25. Logo AlGhuair.JPG
26. Logo Earthtech.JPG
27. Logo Russo.JPG
28. Logo Danbro.JPG
29. Logo Atkins.JPG
30. Logo LBFoster.JPG
31. Logo Dominion.JPG
32. Logo Acons.JPG
33. Logo NSCC.JPG
34. Logo Econstruct.JPG
35. Logo AUD.JPG
18. Logo Eptisa.JPG

      Deep Excavation LLC
    240 W 35th Street, Suite 1004
    New York, NY, 10001
    U.S.A