Tel: 1-206-279-3300

Online Slope Stability, Soil Nailing, and Inclinometer Monitoring Workshop

4 hours each day, 8 PDH

Slope stability, soil nailing, and inclinometer worksho

July 15, 16, 2020

Upcoming Workshop Series

60 hours

Data, databases, and Machine Learning for Geotechnical Engineers

Data, databases, and machine learning for civil engineers

Aug, Sep, Oct 2020

The future of civil engineering is approaching

Online Deep Excavation and Soil nail wall design Workshop

16 PDH

Apr. 22,23, 29, 30, 2020

Deep excavation in Las Vegas

Early registration ends soon!

DeepEX 2020

Solving Deep Excavation Design

DeepEX 2017 talk to it and design your deep excavation!

Deep Foundation Software, Pile Rafts, Pile Groups

From soil estimation to axial and lateral pile capacity

DeepFND - Deep Foundation Software, caissons, CFA, drilled piles, driven piles, concrete, timber

From soil estimation to helical pile settlement estimation.

New helical pile software HelixPile
Signup for a free trial and get our free pdf on the five most common errors in deep excavation design
What do you want to design?
DeepFND 2020: Deep Foundation software (NEW: Pile-Group/Pile Raft Analysis!)
DeepEX 2020: Deep Excavation software
Soldier pile walls
Sheet pile walls
Secant pile Walls
Tangent piles
Diaphragm Walls
Soldier and Tremied Concrete
Soil Mix walls
Combined king pile sheet piles
Slope stability
Cost estimation for braced excavations
Waler-Strut Cofferdams
Snail-Plus 2019: Soil nailing - soil nailing walls
SiteMaster: Inclinometer software (adopted by Geokon)
HelixPile: Helical Pile Software
RC-Solver: Concrete Design ACI-318, EC2, EC8
Steel-Beam: Steel beam column design, full equations, AISC, EC3

Soil nail wall - Soil nailing - soil nailing walls

Soil nail walls consists of installing passive reinforcement (i.e., no post-tensioning) in existing ground by installing closely spaced steel bars or sections (i.e., nails) and placing a front face support. Soil nails are later grouted if they are installed in drilled holes. Ungrouted soil nails are also possible if nails (or steel sections) are driven into the ground. Figure 1 shows typical details of a soil nail wall:

Soil nail wall details showing soil nails and shotcrete facing.

Figure 1: Typical soil nail wall arrangement

SNAILPlus 2018 soil nailing software, used by TX-DOT, WA-DOT and more!

FHWA Equations included in Report!

Soil nail wall construction proceeds from the top to bottom, and head plates are installed on each nail.  Shotcrete or concrete is typically applied on the excavation face to provide continuity when a soil nail wall is constructed.  For a soil nail wall the general construction procedure involves:

a) Excavate for the first nail (soil must be sufficiently self standing)

b) Install the 1st nail.

c) Construct 1st phase shotcrete on soil face (optional if shotcrete is constructed) with wire mesh or other reinforcement if required.

d) Install soil nail head plate (with or without other attachments, Figure 2)

e) Construct 2nd phase shotcrete (depending on staging specifications).

f) Excavate to next soil nail level, and install next soil nail, shotcrete etc.

g) Repeat steps c) through f) until the final excavation level is reached.

h) Construct additional permanent facing if required.

* Drainage filters and drainage pipes are also commonly installed during construction.

Soil nail wall shotcrete and header details

Figure 2: Typical soil nail head plate and shotcrete details (US Practice)

Soil nailing is typically used to stabilize existing slopes or excavations where top-to-bottom construction is advantageous compared to other retaining wall systems. For certain conditions, soil nailing offers a viable alternative from the viewpoint of technical feasibility, construction costs, and construction duration when compared to ground anchor walls, which is another popular top-to bottom retaining system.

Soil nail walls are particularly well suited to excavation applications for ground conditions that require vertical or near-vertical cuts and have been shown to be particularly well suited in the following temporary or permanent applications:

  • Roadway cut excavations.
  • Road widening under an existing bridge end.
  • Repair and reconstruction of existing retaining structures.
  • Temporary or permanent excavations in an urban environment.

Soil nailing has proven economically attractive and technically feasible when:

  • The soil in which the excavation is constructed is able to stand unsupported in a 1- to 2-m (3- to 6-ft) high vertical or nearly vertical cut for one to two days.
  • All soil nails within a cross section are located above the groundwater table
  • If soil nails are below the groundwater table, and the groundwater does not adversely affect the face of the excavation, the bond strength of the interface between the grout and the surrounding ground, or the long-term integrity of the soil nails (e.g., the chemical characteristics of the ground do not promote corrosion).


Soil nail advantages

Soil nail walls exhibit numerous advantages when compared to ground anchors and alternative topdown construction techniques. Some of these advantages are described below:

  • Requires smaller right of wat than ground anchors as soil nails are typically shorter;
  • Less disruptive to traffic and causes less environmental impact compared to other construction methods.
  • Provide a less congested work place, particularly when compared to bracedexcavations.
  • There is no need to embed any structural element below the bottom of excavation as with soldier beams used in ground anchor walls.
  • Soil nail installation is relatively rapid and uses typically less construction materials than ground anchor walls.
  • Nail location, inclination, and lengths can be adjusted easily when obstructions (cobbles or boulders, piles or underground utilities) are encountered. On the other hand, the horizontal position of ground anchors is more difficult to modify almost making field adjustments costly.
  • Since considerably more soil nails are used than ground anchors, adjustments to the design layout of the soil nails are more easily accomplished in the field without compromising the level of safety.
  • Overhead construction requirements are smaller than those for ground anchor walls because soil nail walls do not require the installation of soldier beams (especially when construction occurs under a bridge).
  • Soil nailing is advantageous at sites with remote access because smaller equipment is generally needed.
  • Soil nail walls are relatively flexible and can accommodate relatively large total and differential settlements.
  • Measured total deflections of soil nail walls are usually within tolerable limits.
  • Soil nail walls have performed well during seismic events owing to overall system flexibility.
  • Soil nail walls are more economical than conventional concrete gravity walls when conventional soil nailing construction procedures are used.
  • Soil nail walls are typically equivalent in cost or more cost-effective than ground anchor walls when conventional soil nailing construction procedures are used.
  • Shotcrete facing is typically less costly than the structural facing required for other wall systems.

Soil nail disadvantages

Some of the potential disadvantages of soil nail walls are:

  • Soil nail walls may not be appropriate for applications where very strict deformation control is required for structures and utilities located behind the proposed wall, as the system requires some soil deformation to mobilize resistance. Deflections can be reduced by post tensioning but at an increased cost.
  • Existing utilities may place restrictions on the location, inclination, and length of soil nails.
  • Soil nail walls are not well-suited where large amounts of groundwater seeps into the excavation because of the requirement to maintain a temporary unsupported excavation face.
  • Permanent soil nail walls require permanent, underground easements.
  • Construction of soil nail walls requires specialized and experienced contractors.

Soil nail wall construction sequence

Soil nail wall construction sequence, excavate to first soil nail, install soil nail, place drains, construct shotcrete, excavate to next soil nail level.

E-mail List Signup

Signup to our Email List for the latest information about our products, support and more.

Do you want to easily design soil nail walls?

See how SnailPlus prepares all calculations and equations according to FHWA (ASD and LRFD) standards!

Used by TXDOT and WA-DOT as well as other respected companies.

Two step soil nail wall analyzed with SnailPlus soil nail wall software


Register for our deep excavation training Webinars 
Snail Plus: Our newest soil nailing software generates full calculation reports!
DeepXcav: Deep excavation design software

Join us on our training webinars. Get expert knowledge for deep excavation design. We take you step by step and teach you how to approach your designs. This live webinar lasts two hours.

Find out more!

Training webinar for deep excavation design

Snail Plus is our soil nailing software. It is the only software program that presents all calculations and allows you to generate a full calculation report.

Find out more!

Snailz plus software - soil nail analysis

DeepXcav is the software program of choice for more than 1200 engineers worldwide. Design slurry wall excavations.

Find out more!

DeepEX software designs for slurry walls

Design Soil Nail Walls Efficiently with SnailPlus