top of page
Feel free to ask question for deep excavation answers

FIND ALL THE ANSWERS TO YOUR QUESTIONS

See how our software helps you save and stay safe

1

GENERAL

DEEP EX FREQUENTLY ASKED QUESTIONS

  • INTERFAZ INTERACTIVA SUPERIOR
    SnailPlus es un software extremadamente amigable, que ofrece una interfaz de modelo interactiva. En el área del modelo podemos crear todas las etapas y definir todos los parámetros del proyecto (cargas externas, secciones de clavos de suelo, secciones de hormigón proyectado, etc.) gráficamente. Todos los elementos en el área del modelo (sondeo, clavos de suelo, revestimiento) pueden ser accedidos y sus propiedades pueden ser definidas a través de diálogos amigables para el usuario.
  • EXPORTAR INFORMES EN PDF Y MS WORD
    Los informes de SnailPlus pueden incluir tablas y gráficos con todas las propiedades del modelo examinadas y los resultados calculados. También podemos optar por incluir en el informe todas las ecuaciones de diseño estructural y el procedimiento de cálculo. Los informes de SnailPlus se pueden previsualizar, exportar en formato PDF o exportar en formato Word, para que puedan ser editados posteriormente por el usuario. Seleccionar Secciones de Diseño para el Informe Seleccionar Etapas de Construcción para el Informe Personalizar los Gráficos del Informe Definir la Distribución del Informe Definir las Secciones del Informe Posibilidad de Incluir Ecuaciones y Cálculos de Etapa en el Informe Previsualizar el Informe Exportar Informes en Formatos PDF y Word
  • PROPIEDADES DEL SUELO - REGISTROS SPT - REGISTROS CPT
    Los tipos de suelo, las propiedades del suelo y las estratigrafías pueden definirse fácilmente en SnailPlus mediante diálogos amigables para el usuario. En SnailPlus podemos crear una lista ilimitada de suelos y definir todas las propiedades del suelo rápidamente. El software proporciona varias herramientas de estimación (Estimador SPT y herramientas de estimación parcial para cada propiedad utilizando métodos y ecuaciones científicas). En SnailPlus podemos agregar directamente Registros SPT y Registros CPT, que pueden ser utilizados desde el software para estimar diversas propiedades del suelo. Definir lista de tipos de suelo Definir lista de estratigrafías (sondeos) Herramientas de estimación de propiedades del suelo Registros SPT Registros CPT
  • Modelo Wizard -Cree un modelo en segundos
    Modelo Wizard de SnailPlus se puede utilizar para crear cualquier superficie inclinada con todas las etapas de construcción, excavaciones e instalación de clavos de suelo y revestimientos en minutos. Podemos usar las pestañas del asistente para definir todos los parámetros del proyecto (parámetros de la superficie inclinada, clavos de suelo - placas de cabeza y secciones estructurales de hormigón proyectado, opciones de etapa y estándares de diseño). El Asistente crea el modelo automáticamente, ahorrándonos mucho tiempo y esfuerzo para la creación inicial.
  • CÓDIGOS DE DISEÑO ESTRUCTURAL Y GEOTÉCNICO
    HelixPile ha implementado muchos códigos y estándares internacionales de diseño para el diseño y análisis (estructural y geotécnico) de los pilotes helicoidales. En HelixPile podemos realizar un diseño de servicio o con factores utilizando normas de EE.UU. y Europa. Podemos seleccionar y cambiar fácilmente entre varios códigos estructurales de EE.UU., Europa, Australia y China. ACI 318-11 (Miembros de Hormigón Armado) ASD 1989 (Diseño por Esfuerzos Admisibles - Miembros de Acero) AASHTO LRFD 13ª Edición (Miembros de Acero) AISC 360 y 360-Admisible (2010 y 2016) Especificaciones EUROCODE 2, 7 y 8 Combinaciones de Cargas de AASHTO LRFD Códigos Europeos (DIN, BS, XP94, DM, DA) Normas Australianas (AS 3600, AS/NZS 4100) Normas Chinas (CN)
  • GRUPOS DE PILOTES - LOSAS SOBRE PILOTES
    HelixPile puede diseñar tanto Pilotes Helicoidales Individuales como Grupos de Pilotes con múltiples pilotes (se requiere el módulo opcional adicional Grupos de Pilotes). El software también puede diseñar Balsas de Pilotes, considerando el efecto combinado del suelo bajo la balsa (módulo adicional a nuestra opción de Grupo de Pilotes). Pilotes Helicoidales Individuales Tapas de Pilotes Rectangulares Tapas de Pilotes Triangulares Tapas de Pilotes Circulares Tapas de Pilotes Hexagonales Tapas de Pilotes Octagonales Tapas de Pilotes con Perímetro Definido por el Usuario Balsas de Pilotes
  • TIPOS DE PILOTES Y CONFIGURACIONES DE HÉLICE
    HelixPile puede realizar un diseño completo tanto vertical como lateral de pilotes helicoidales. Los pilotes helicoidales en HelixPile pueden ser de cualquier forma típica (tubos, secciones cuadradas sólidas y secciones cuadradas huecas). En cada pilote podemos definir y asignar un número ilimitado de configuraciones de hélice. Los pilotes pueden ser inyectados. Finalmente, podemos usar una carcasa externa en la cabeza del pilote, aumentando la capacidad lateral del pilote. Tubos de acero Secciones cuadradas sólidas de acero Secciones cuadradas huecas de acero Configuraciones de hélice ilimitadas por pilote Pilotes inyectados Uso de carcasa de acero externa
  • ANÁLISIS AXIAL Y LATERAL DE PILOTES
    HelixPile puede realizar análisis tanto verticales como laterales de pilotes. HelixPile utiliza tanto los métodos de la placa individual como del cilindro, reportando los resultados más críticos. Se pueden seleccionar las ecuaciones generales y las de Helicap. Para el diseño de pilotes verticales, podemos optar por utilizar el método de Vesic o el de Meyerhoff-Hansen. HelixPile calcula y verifica el torque de instalación de los pilotes helicoidales. Para el análisis lateral de pilotes, HelixPile puede usar la carga definida en la cabeza del pilote y calcular los diagramas de momento desarrollado, cortante y desplazamiento del pilote, o puede realizar un análisis de empuje, calculando y presentando la carga lateral requerida para alcanzar un desplazamiento especificado de la cabeza del pilote. HelixPile puede realizar análisis de asentamiento. En el software podemos seleccionar uno de los criterios de aceptación de pilotes implementados, o definir nuestro propio criterio.
  • INTERFAZ INTERACTIVA SUPERIOR
    HelixPile es un software extremadamente fácil de usar, que ofrece una interfaz de modelo interactiva. En el área del modelo podemos crear diferentes etapas de carga y definir todos los parámetros del proyecto (cargas externas en la cabeza del pilote, propiedades de la sección del pilote, etc.) gráficamente. Todos los elementos en el área del modelo (perforación, pilote, cargas externas) pueden ser accedidos y sus propiedades pueden ser definidas a través de diálogos amigables.
  • INFORMES EXPORTADOS EN PDF Y WORD
    HelixPile puede generar extensos informes para todas las secciones de diseño examinadas (pilotes) y etapas de carga. Los informes en HelixPile son totalmente personalizables: el usuario final siempre puede seleccionar todas las secciones del informe incluidas en el informe final. Los informes de HelixPile pueden incluir tablas y gráficos con todas las propiedades del modelo examinado y los resultados calculados. También podemos optar por incluir en el informe todas las ecuaciones de diseño estructural y el procedimiento de cálculo. Los informes de HelixPile pueden ser previsualizados, exportados a formato PDF o Word, de modo que pueden ser editados posteriormente por el usuario. Seleccione secciones de diseño para informar Seleccione etapas de construcción para informar Personalice los gráficos del informe Defina el diseño del informe Defina las secciones del informe Posibilidad de informar ecuaciones y cálculos de etapas Vista previa del informe Exportar informes en formatos PDF y Word
  • GENERACIÓN Y OPTIMIZACIÓN AUTOMÁTICA DE MODELOS DE AUTOMÓVILES
    El Asistente de Modelo de HelixPile puede usarse para crear cualquier modelo de fundación profunda en minutos. Podemos usar las pestañas del asistente para definir todos los parámetros del proyecto (configuraciones de análisis, tipo de pilote y sección estructural, cargas externas y normas de diseño). El asistente crea automáticamente el modelo, ahorrándonos mucho tiempo y esfuerzo en la creación inicial. HelixPile cuenta con una herramienta de optimización automática de longitud. El software puede usar un paso definido para aumentar la profundidad del pilote hasta un límite de profundidad definido, calculando la capacidad de tensión y compresión axial en cada paso.
  • PROPIEDADES DEL SUELO - REGISTROS SPT - REGISTROS CPT
    Los tipos de suelos, propiedades de suelos y estratigrafías pueden ser fácilmente definidos en HelixPile a través de diálogos amigables. En HelixPile podemos crear una lista ilimitada de suelos y definir rápidamente todas las propiedades del suelo. El software proporciona varias herramientas de estimación (Estimador SPT y herramientas de estimación parcial para cada propiedad usando métodos y ecuaciones científicas). En HelixPile podemos añadir directamente Registros SPT y Registros CPT, que pueden ser utilizados por el software para estimar diversas propiedades del suelo. Definir lista de tipos de suelo Definir lista de estratigrafías (perforaciones) Herramientas de estimación de propiedades del suelo Registros SPT Registros CPT
  • TIPOS DE MURO MÚLTIPLES
    El software QuayWalls puede diseñar cualquier tipo de sección de muro de muelle de gravedad, calculando las presiones del suelo, agua, olas y sísmicas sobre el sistema de muro. QuayWalls se puede utilizar para el diseño y análisis de: Muros cantiléver Muros segmentados Muros de cajón de caja con zonas de relleno de suelo Muros en forma de T Muros definidos por el usuario
  • PRESIONES DE OLAS Y REBASE
    QuayWalls puede calcular las presiones de las olas utilizando varios métodos establecidos. Las alturas iniciales de las olas y las longitudes de onda se pueden estimar con recomendaciones implementadas, o definidas manualmente por el usuario a través de un diálogo amigable. Finalmente, QuayWalls puede estimar automáticamente las tasas de flujo de rebase, ya que puede realizar cálculos de volumen de rebase promedio utilizando las ecuaciones de PROVERBS. Goda SainFlou Manual de Ingeniería Costera 2011 Allsop PROVERBS
  • ANÁLISIS DE ESTABILIDAD DE TALUDES Y DISEÑO DE CLAVOS DE SUELO
    SnailPlus global stability of slope surfaces (simple or reinforced with soil nails). SnailPlus can calculate and report the most critical slope surface and the slope stability safety factor with the use of several scientific methods. Soil nails can be used in the slope surfaces. SnailPlus calculates the effects of the soil nails to the slope stability analysis. Método de Bishop Método Morgenstern-Price (Equilibrio Límite General) Método de Spencer Normas francesas Clouterre para el diseño de clavos de suelo
  • DISEÑO COMPLETO DEL REVESTIMIENTO DE SHOTCRETE
    SnailPlus puede diseñar el revestimiento de shotcrete. También se pueden definir y analizar revestimientos de dos etapas (temporales y permanentes) con el software. SnailPlus realiza verificaciones en las placas de cabeza de los clavos de suelo. Diseño del revestimiento de shotcrete Revestimiento de dos etapas disponible Verificaciones de placas de cabeza
  • CÓDIGOS DE DISEÑO Y ESPECIFICACIONES
    SnailPlus ha implementado diversos estándares y especificaciones para el diseño de clavos de suelo y revestimientos de shotcrete. En SnailPlus podemos seleccionar especificaciones de ACI y FHWA para el diseño estructural. En el software podemos utilizar métodos de Estado Límite de Servicio o Estado Límite Último. Método Directo ACI Métodos FHWA y FHWA LRFD LRFD WSDOT 2019 (GDM) Factores de seguridad ASD LRFD FHWA GEC-7 EUROCODE 7 - Enfoque ULS
  • OPCIONES DE BÚSQUEDA DE SUPERFICIES DE TALUD MÚLTIPLES
    SnailPlus puede localizar e informar sobre la superficie de talud más crítica utilizando diversos métodos de búsqueda de superficies de talud: Superficies de Talud Circulares Superficies Circulares con Cuñas Activas y/o Pasivas Método Automático de Búsqueda de Superficies Métodos de Búsqueda de Superficies Trilineales Superficies con falla tipo bloque Superficies de Talud Definidas por el Usuario
  • What is the difference between DeepFND and HelixPile?
    DeepFND and HelixPile are two similar, powerful software programs for the design and evaluation pile foundations. The programs can perform structural and geotechnical, lateral, and axial analysis of any foundation pile (single piles, pile groups and pile rafts).The only difference between the two programs is the available pile types. DeepFND can design all pile sections and pile types (helical and non-helical – drilled, driven, caissons, micropiles, CFA piles and more), whereas HelixPile can design only helical piles.
  • Does your program check the structural capacities of the piles as well?
    DeepFND and HelixPile software have implemented several structural codes used worldwide. The software do all calculations according to the selected standard and calculate the pile moment and shear capacities. All structural design checks and equations can be included in the software reports. Figure: Pile Moment, Shear and Displacement Diagrams - DeepFND
  • Can your software design pile caps with a group of piles?
    Our foundation pile design software can design single foundation piles, pile groups and pile rafts. The following pile cap shapes are available: Rectangular Pile Caps Triangular Pile Caps Circular Pile Caps Hexagonal Pile Caps Octagonal Pile Caps User-Defined Perimeter Pile Caps Pile Rafts The user can create a concrete cap of any shape and define the pile configuration (pile locations and structural sections). The program can calculate the load that is transfered on each pile, considering the pile location and analyze all piles. Figure: A Rectangular Cap with Concrete Piles - DeepFND Figure: A Circular Cap with Helical Piles - DeepFND and HelixPile
  • What type of Pile Analysis can your software do?
    Our foundation piles design software DeepFND and HelixPile can perform axial and lateral analysis of any pile type. The programs can calculate the pile shaft resistance and the bearing capacity of the piles, taking into consideration the pile installation method. In addition, the software can do lateral pile analysis, calculating the pile displacements, moment and shear diagrams for any applied load combination on the pile head.
  • How is the pile cap modelled, rigid or finite stiffness?
    The pile cap is modelled with quadrilateral shell finite elements. The user can post process stress resultants and displacement of the cap.
  • What type of loads can i add on a single pile?
    In DeepFND and HelixPile software, we can add axial loads, lateral loads and external moments on both directions on each single pile head. In addition, we can add a distrubuted lateral load along the pile (user-defined elevations and magnitude). The following list summarizes the loads that can be applied on each axis. - Axial Loads (Z Axis) In DeepFND and HelixPile we can add axial loads on the pile head. A positive axial load magnitude is a compression load (downwards) and a negative magnitude is a tension load (uplift). - Lateral Loads (X Axis) The X-Axis is along the screen. A positive magnitude is a left-to-right load, and a negative magnitude is a right-to-left load. - Lateral Loads (Y Axis) The Y-Axis is on the perpendicular direction of the screen. A positive magnitude is an inwards load, and a negative magnitude is an outwards load (from the screen to the user). - External Moments (X and Y Axis) The external moments on each direction can be defined for each stage. A positive moment magnitude is a counter-clockwise moment, a negative value is a closkwize moment.
  • Which structural section types can i use in DeepFND?
    DeepEX software can design any common pile type in minutes. The user can select the preferred pile type and define fast the wall section properties (dimensions, reinforcement, materials). The following pile types are available: Typical piles (drilled, driven, CFA, Caisons etc) can be of any typical shape (circular, square, hollow) reinforced concrete, structural steel or timber (wood). The pile can be normal or belled type. We can define composite pile sections and we can change the pile section along the pile depth. Helical piles in DeepFND can be of any typical shape (pipes, square solid and square hollow sections). In each pile we can define and assign and unlimited number of helix configurations. The piles can be grouted. Finally, we can use external casing on the pile head, increasing the pile lateral capacity. Helical piles (pipes, square solid or square hollow sections) Reinforced concrete piles (circular or square section) Prestressed Concrete & Sections with GFRP and CFRP Steel beams (H piles, pipes, channel sections) Belled type piles Timber piles (wood) Steel core piles Composite piles
  • Can i check a certain pile under different load combinations?
    In DeepFND and HelixPile software, the user can add construction stages in any foundation pile section model. The stages in our foundation pile design programs work as loading stages, we can access and define tha axial tension and compression loads, as well as, the lateral loads and external moments for different stages and the software will calculate the pile capacities for all load combinations. Figure: Pile Loading in different stages
  • How can i add a CPT log in your software?
    The user can create the file in excel and then export it as tab delimited. The file can be of .txt or .cor format. The files should follow a specific format - 1st row should be parameter names, second row should be the units, and then row by row (without the first column numbering), we need to include four specific columns as presented in the image below: After the cpt log import, the user needs to press on the "Process Data" button, so the rest of the properties are estimated:
  • Is it possible to view the Moment and shear and interaction diagrams used to calculate reinforcement?
    In DeepFND we can view the interaction diagrams for each concrete section. We can also view Moment and shear along the pile, with the capacity indicated with the red lines left and right of the M and Q diagrams. All diagrams, including the interaction diagrams can be included in the exported reports.
  • For a piled raft, how is the influence of the raft on the soil taken into account?
    When the raft option is enabled the soil beneath the cap is considered through a non-linear Winkler base (either elastoplastic or exponential plastic formulation based on user selection). Influence of the raft on the soil is taken into account through the automatic configuration of the free length of the internal piles based on the intersection between the pile influence regions. The soil enclosed within the free length region is considered to be moving along with the cap and piles , thus shear resistance contribution along the perimeter of the piles within the free length region is considered to be zero.
  • Can i create and save my own piles with helix configurations in DeepFND & HelixPile?
    DeepFND and HelixPile software programs can design any common helical pile shape (pipes, square solid and square hollow sections). We can easily select the section shape and define the section parameters (dimensions, material properties etc). On each created pile section, we can fast generate several helix configurations, by defining the number of helixes, the helix plate diameter and thickness, and the plate spacing. All the generated helix configurations can be saved on a partial database, unique for each generated pile. Later, we can simply access and assign one of the generated helix configurations to the pile. We can select to use an external casing on any helical pile, in order to increase the lateral pile capacity. We simply need to define the casing section and the length from the pile top, where the casing is placed. The generated helical pile sections can be saved in a folder in any local device, and they can be loaded in any software file. Finally, any pile in DeepFND and HelixPile can be grouted. For grouted piles, we need to define the grout diameter, and the part of the pile which is grouted.
  • What type of loads can i add on a pile cap?
    In DeepFND and in HelixPile, we can define several loads on a pile cap, as follows: A. Single load at the pile cap centroid This is the default option in the software Wizard. The user can automatically define the maximum axial load on the cap, the maximum lateral loads and external moments on each direction (X and Y axis), as well as the torsional moment that can be applied on the cap. B. Point Loads on User-Defined Locations This option allows the user to create load groups of point loads and define the load coordinates, as well as the magnitude of the axial load, and the lateral load and moment at every axis (X and Y). C. Area Loads on the Pile Cap This option allows the user to assign an area pressure load on the whole cap surface, or at user-defined locations. D. Linear Loads on the Pile Cap This option allows the user to assign linear loads between 2 user-defined points on the pile cap.
  • What in the Max Stress Check result i get in the summary table after the analysis?
    The maximum stress check result is the most critical of all structural and geotechnical checks. DeepFND calculates all and reports there the most critical one (biggest). In general, all checks in the program are (applied force/Capacity). So, Max Stress Check is the most critical of: 1. (Maximum Compression Load) / (Compression Capacity) (Geotechnical check) 2. (Maximum Tension Load) / (Tension Capacity) (Geotechnical check) 3. (Maximum plate reaction) / (Plate Ultimate Capacity) (Structural Check) 4. (Maximum Pile Moment) / (Pile Moment Capacity) (Structural Check)
  • How is the structural resistance determined?
    The structural capacity is calculated in accordance to the standards selected by the user and the nature of the section (concrete, steel, timber, composite etc). The user can define the structural section (concrete piles with internal reinforcing cage, steel casing, drivel steel beams with or without concrete covers, timber piles and then the software uses the corresponding design codes.
  • What theory is used for the lateral pile load analysis?
    The software uses P-Y curves to simulate the soil, while an Euler-Bernoulli beam (elastic or inelastic pile behaviour with distributed plasticity along the pile) is used for the pile. A full FEM analysis engine is currently under development and will be implemented in the DeepFND/HelixPile 2021 versions.
  • How does DeepFND consider the pile cap side lateral response (if the cap is inside the soil)?
    For the lateral resistance contribution of the cap there are 2 mechanisms that need to be included, (a) the passive resistance and (b) the bottom/side friction resistance of the pilecap. We have incorporated an automatic calculation of all the lateral springs of a pile cap. The constitutive laws of the pilecap lateral springs used in the software are illustrated bellow:
  • Is pile to pile interaction taken into account and how?
    The user has a number of options available for the consideration of the group interaction factors. The automatic approach corresponds to the methodology proposed in [1], however an extension has been implemented where influence between piles with different dimensions is taken into account.
  • GRUPOS DE PILOTES - LOSAS SOBRE PILOTES
    DeepFND puede diseñar tanto pilotes individuales como grupos de pilotes con múltiples pilotes (se requiere el módulo opcional adicional Grupos de Pilotes). El software también puede diseñar losas sobre pilotes, considerando el efecto combinado del suelo debajo de la losa (módulo adicional a nuestra opción de grupo de pilotes). Pilotes individuales Cabezas de pilotes rectangulares Cabezas de pilotes triangulares Cabezas de pilotes circulares Cabezas de pilotes hexagonales Cabezas de pilotes octogonales Cabezas de pilotes con perímetro definido por el usuario Losas sobre pilotes
  • CAPACIDAD GEOTÉCNICA - TIPOS DE PILAS
    DeepFND implementa todos los métodos científicos aprobados para el diseño de pilas de cimentación profunda. Con DeepFND podemos diseñar pilas perforadas, pilas hincadas, pilas CFA, cajones, pilas perforadas con desplazamiento, micropilotes y pilotes helicoidales. Pilas Perforadas Pilas Hincadas Pilas Perforadas con Desplazamiento Pilas CFA Micropilotes Cajones Pilotes Helicoidales Normas Implementadas: FHWA GEC8 & GEC 10 AASHTO Norlund AASHTO LRFD O’Neil y Reese FHWA 1999
  • DISEÑO ESTRUCTURAL
    DeepFND incorpora muchos códigos y normas de diseño internacionales para el diseño y análisis (estructural y geotécnico) de todos los tipos de pilotes de muro. En DeepFND podemos realizar un diseño de servicio o un diseño factorizado utilizando las normas de EE. UU. y Europa. Podemos seleccionar y cambiar fácilmente entre varios códigos estructurales de EE. UU., Europa, Australia y China. ACI 318-11 y 318-19 (Miembros de Hormigón Armado) ASD 1989 (Diseño de Esfuerzo Admisible - Miembros de Acero) AASHTO LRFD 13ª Edición (Miembros de Acero) - AISC 360 y 360 Allowable (2010 y 2016) Especificaciones de EUROCODE 2, 7 y 8 AASHTO LRFD 6ª, 8ª y 9ª - PEN DOT AASHTO Códigos Europeos (DIN, BS, XP94, DM, DA) Normas Australianas (AS 3600, AS/NZS 4100) Normas Chinas (CN) Código de Edificación de NYC Normas IBC 2015
  • ANÁLISIS AXIAL Y LATERAL DE PILOTES
    DeepFND realiza análisis de pilotes verticales y laterales e incluye varias ecuaciones de capacidad de carga. Recomendaciones sencillas le ayudan a seleccionar el método apropiado dependiendo del tipo de pilote y del método de instalación. Para pilotes regulares: DeepFND implementa múltiples normas de instalación de pilotes (FHWA GEC-8 y 10, AASHTO Norlund, IBC, Código de Edificación de NYC, AASHTO LRFD y más). Para pilotes helicoidales, el software utiliza tanto los métodos de placa individual como de cilindro, reportando el más crítico. Se pueden seleccionar las ecuaciones generales y Helicap. Para el diseño de pilotes verticales, podemos elegir usar ya sea el método de Vesic, o el método de Meyerhoff-Hansen. DeepFND calcula y verifica el torque de instalación de los pilotes helicoidales. Para el análisis lateral de pilotes, DeepFND puede usar la carga definida en la cabeza del pilote y calcular los diagramas de momento desarrollado, corte y desplazamiento del pilote, o puede realizar un análisis de empuje, calculando y presentando la carga lateral requerida para lograr un desplazamiento específico de la cabeza del pilote. DeepFND puede realizar análisis de asentamiento. En el software podemos seleccionar uno de los criterios de aceptación de pilotes implementados, o definir el nuestro.
  • PROPIEDADES DEL SUELO - REGISTROS SPT - REGISTROS CPT
    Los tipos de suelo, las propiedades del suelo y las estratigrafías se pueden definir fácilmente en DeepFND a través de diálogos amigables para el usuario. En DeepFND podemos crear una lista ilimitada de suelos y definir todas las propiedades del suelo rápidamente. El software proporciona varias herramientas de estimación (Estimador SPT y herramientas de estimación parcial para cada propiedad utilizando métodos científicos y ecuaciones). En DeepFND podemos añadir directamente registros SPT y registros CPT, que se pueden utilizar desde el software para estimar varias propiedades del suelo. Definir lista de tipos de suelo Definir lista de estratigrafías (sondeos) Herramientas de estimación de propiedades del suelo Registros SPT Registros CPT
  • INTERFAZ INTERACTIVA SUPERIOR
    DeepFND es un software extremadamente fácil de usar, que ofrece una interfaz de modelo interactiva. En el área del modelo podemos crear diferentes etapas de carga y definir todos los parámetros del proyecto (cargas externas en la cabeza del pilote, propiedades de la sección del pilote, etc.) gráficamente. Todos los elementos en el área del modelo (sondeo, pilote, cargas externas) se pueden acceder y sus propiedades se pueden definir a través de cuadros de diálogo fáciles de usar.
  • GENERACIÓN Y OPTIMIZACIÓN AUTOMÁTICA DE MODELOS DE AUTOMÓVILES
    El asistente de modelos DeepFND se puede utilizar para crear cualquier modelo de cimentación profunda en cuestión de minutos. Podemos utilizar las pestañas del asistente para definir todos los parámetros del proyecto (configuraciones de análisis, tipo de pilote y sección estructural, cargas externas y normas de diseño). El asistente crea el modelo automáticamente, lo que nos ahorra mucho tiempo y esfuerzo para la creación inicial. DeepFND cuenta con una herramienta de optimización automática de longitud. El software puede usar un paso definido para aumentar la profundidad de los pilotes hasta un límite de profundidad definido, calculando la capacidad de tensión y compresión axial en cada paso.
  • INFORMES EXPORTADOS EN PDF Y WORD
    DeepFND puede generar informes extensos para todas las secciones de diseño examinadas (pilotes) y etapas de carga. Los informes en HelixPile son totalmente personalizables: el usuario final siempre puede seleccionar todas las secciones del informe incluidas en el informe final. Los informes de DeepFND pueden incluir tablas y gráficos con todas las propiedades del modelo examinado y los resultados calculados. También podemos optar por incluir en el informe todas las ecuaciones de diseño estructural y el procedimiento de cálculo. Los informes de DeepFND se pueden previsualizar, exportar a formato PDF o exportar a formato Word, para que puedan ser editados posteriormente por el usuario. Seleccionar Secciones de Diseño para Informar Seleccionar Etapas de Construcción para Informar Personalizar Gráficos de Informes Definir el Diseño del Informe Definir las Secciones del Informe Posibilidad de Informar Ecuaciones y Cálculos de Etapas Previsualizar el Informe Exportar Informes en Formatos PDF y Word
  • Estructuras - Códigos y normativas geotécnicas
    Las excavaciones profundas requieren el cumplimiento tanto de normas estructurales como geotécnicas. Te cubrimos con numerosos códigos de diseño y normas internacionales para el diseño y análisis (estructural y geotécnico) de todos los tipos de muros y sistemas de soporte. Puedes realizar un diseño de servicio o factorizado con normas estadounidenses, europeas, australianas o chinas y seleccionar y cambiar fácilmente entre varios estándares de código: ACI 318 2019 (Miembros de hormigón armado) ASD 1989 (Diseño por Esfuerzos Permisibles - Miembros de acero) AASHTO LRFD 9ª Edición (Miembros de acero) AISC 360 y 360-Allowable (2010 y 2016) Especificaciones EUROCODIGO 2, 3, 7 y 8 Combinaciones de carga AASHTO LRFD 9ª Combinaciones de carga CALTRANS LRFD 2012 Combinaciones de carga PEN DOT AASHTO 2012 Códigos europeos (DIN, BS, XP94, DM, DA) BS 6349 Partes 1-2 (Estructuras marinas-Muros de muelle) Códigos canadienses (CSA, NR24-28-2018) Normas australianas (AS 3600, AS/NZS 4100) Normas chinas (CN)
  • MÉTODOS DE ANÁLISIS: LEM, No Lineal, FEM+
    DeepEX implementa todos los métodos científicos aprobados para el diseño de proyectos de excavación profunda. Realice fácilmente un análisis clásico de equilibrio límite, un método de análisis no lineal con resortes Winkler elastoplásticos (viga sobre cimientos elastoplásticos), o un análisis completo de elementos finitos. Un análisis de elementos finitos se puede realizar si agrega y activa nuestro motor de análisis de elementos finitos DeepFEM en cualquier versión de DeepEX: Método de Análisis de Equilibrio Límite (LEM) Método de Análisis No Lineal (NL) Método de Análisis de Elementos Finitos (FEM) - Análisis Combinado (LEM+NL) Análisis Combinado (LEM+FEM)
  • ANÁLISIS DE ELEMENTOS FINITOS 3D
    Genera, analiza y diseña modelos de excavación 3D a gran escala de manera transparente con nuestro potente motor de Análisis de Elementos Finitos 3D. Genera cualquier modelo FEM 3D en segundos con nuestros potentes asistentes Creación y edición de modelos paramétricos – accede y edita todos los elementos en el área del modelo en segundos Realiza FEM 3D considerando la interacción completa suelo-estructura Revisa los resultados en tablas para todas las paredes, puntales y soportes Realiza comprobaciones estructurales en todos los soportes y puntales Revisa las sombras FEM 3D para suelo, paredes y soportes en todas las etapas
  • SISTEMAS DE SOPORTE EN DEEPEX
    Realiza tanto el diseño estructural como geotécnico de muchos sistemas de soporte diferentes. Puedes añadir soportes gráficamente en el área del modelo y modificar fácilmente haciendo doble clic. Cambia fácilmente las secciones de soporte con una extensa base de datos de secciones de acero implementada. Excavaciones en Voladizo Excavaciones Ancladas (Anclajes, Anclajes Helicoidales) Excavaciones Apuntaladas (Pilares y Tirantes de Acero) Cofradías Pilares y Tableros Mecánicos e Hidráulicos Excavaciones de Arriba hacia Abajo (Losas de Concreto Armado) Excavaciones Escalonadas Losas de Concreto para Sótanos Amarres y Pilotes debajo de Losas de Base Pilotes de Cimentación para Estabilidad de Taludes Columnas de Acero Verticales Soportes Fijos y de Resorte Sistemas de Muro de Hombre Muerto Sistemas de Muro de Tipo Bin Excavaciones de Tipo Caja (Tableros de Acero o Concreto) Pozos Circulares
  • MUROS GRAVITACIONALES - MUROS MARINOS - APOYOS DE PILAS - MSE
    DeepEX permite el diseño de Muros de Contención Gravitacionales, Soportes de Pilas y Muros Marinos con los correspondientes módulos adicionales opcionales que pueden ser activados dentro del software. Módulo de Muros Gravitacionales: Permite el diseño de muros de contención gravitacionales de concreto armado de cualquier forma (muros continuos o pilares 3D), calculando los factores de seguridad de deslizamiento, carga y vuelco del muro. Módulo de Apoyos de Pilas: Permite el uso de pilotes de cimentación en secciones de muro gravitacional (creando apoyos de pilas) y cimentaciones de pilotes adyacentes al sitio de excavación. El módulo permite el cálculo de las fuerzas en cada pilote y el diseño lateral y vertical de los pilotes (cálculo de momentos de pilote, cortante y diagramas de desplazamiento, así como el cálculo de la capacidad de carga de los pilotes). Prerrequisito: Módulo de muros gravitacionales Módulo de Muros Marinos - Presiones de Oleaje - Sobrepaso: Permite el diseño de muros marinos, muros de bloques/segmentos con resistencias cortantes individuales y densidades, muros de cajones de muelle (3D) con relleno y más, el cálculo de las presiones del oleaje con Sainflou, McConnel, Proverbios, Combinaciones de carga para British Standards 6349 Partes 1-2 (Estructuras Marinas-Muros de Muelle) y más. Prerrequisito: Módulo de muros gravitacionales Módulo de MSE Muros - Refuerzos de Suelo: Permite el diseño de terraplenes con refuerzos de suelo (rejillas y tiras de acero, georedes, geotextiles) y columnas de piedra. Los refuerzos de suelo pueden ser utilizados para estabilizaciones de taludes. Prerrequisito: Módulo de muros gravitacionales
  • TIPOS DE PAREDES EN DEEPEX
    DeepEX puede ser utilizado para el diseño y análisis de todos los tipos de paredes comúnmente utilizados. Define las propiedades de la sección de la pared de manera eficiente a través de diálogos fáciles de usar y actualiza fácilmente las listas de materiales estructurales con materiales nuevos o estándar. Una extensa base de datos de refuerzo de barras de acero y secciones de acero te cubre para trabajar en cualquier parte del mundo. Paredes de Pilotes Militares y Encofrado Paredes de Tablestacas (Acero, Madera, Vinilo) Paredes de Pilotes Secantes - Paredes de Pilotes Tangentes Paredes de Diafragma de Concreto (Paredes de Lodo) Paredes Combinadas de Tablestacas (Sistema de Pila Rey - tablestaca) Tablestacas en Caja Paredes de Pilotes Militares y Concreto Vaciado con Tremie (Paredes SPTC) Paredes y Pilotes Pretensados y de GFRP
  • PROPIEDADES DEL SUELO - REGISTROS SPT - REGISTROS CPT
    Los tipos de suelos, las propiedades del suelo y las estratigrafías se pueden definir fácilmente en DeepEX a través de diálogos amigables para el usuario. Cree una lista ilimitada de tipos de suelo y defina rápidamente todas las propiedades del suelo. Estime rápidamente las propiedades del suelo con varias herramientas de estimación (SPT, Estimador CPT y otras herramientas con métodos y ecuaciones de estimación aceptadas por la industria). El módulo adicional, Informe de Estimación del Suelo y Análisis Estadístico, le permite realizar un análisis estadístico de los parámetros del suelo estimados con una amplia gama de métodos. El análisis estadístico nos permite estimar la variabilidad de las propiedades del suelo con la profundidad o en el plano del proyecto. Luego, puede seleccionar los valores de diseño deseados en función del nivel de confianza deseado. En DeepEX, podemos agregar directamente registros SPT y registros CPT, que pueden ser utilizados desde el software para estimar diversas propiedades del suelo.
  • ANÁLISIS DE LA ESTABILIDAD DE LA LADERA Y ANCLAJE DE SUELOS
    DeepEX implementa herramientas que pueden evaluar la estabilidad global de modelos de excavación y superficies de ladera (simples o reforzadas con anclajes de suelo). DeepEX puede calcular e informar sobre la superficie de ladera más crítica y el factor de seguridad de estabilidad de la ladera con el uso de varios métodos científicos. Los anclajes de suelo pueden ser utilizados en las superficies de ladera. DeepEX calcula los efectos de los anclajes de suelo en el análisis de estabilidad de la ladera. Método de Bishop Método de Morgenstern-Price (Equilibrio Límite General) Método de Spencer Método Sueco Ordinario (método de cortes) Normas francesas Clouterre para el diseño de anclajes de suelo
  • SECCIONES CORTADAS EN 2D Y MODELOS DE EXCAVACIÓN EN 3D
    Afronta desafíos de diseño adicionales con módulos DeepEX adicionales. No todas las excavaciones profundas requieren las mismas capacidades. Puedes ampliar las capacidades de tu solución con las siguientes versiones/módulos de DeepEX: DeepEX 2D: Para el diseño y optimización de todas las secciones de diseño de proyectos en 2D. DeepEX 3D: Exporta el modelo de marco 3D con todos los niveles de refuerzo, para que se pueda calcular el proyecto completo con todos los soportes. Con DeepEX 3D también podemos realizar una estimación del costo total para el proyecto completo. Se pueden añadir módulos adicionales en cualquiera de las versiones principales de DeepEX (2D y 3D), aumentando las capacidades del software: - Módulo de exportación de dibujos a DXF: Con este módulo todas las secciones 2D para todas las etapas de construcción y secciones de pared pueden ser exportadas a DXF y abiertas en cualquier software CAD. En DeepEX 3D, la misma característica puede ser utilizada para la exportación del plan completo del proyecto y vistas laterales. Módulo de conexión de acero: Permite generar fácilmente todas las conexiones de acero para walers a puntales y walers de esquina. Una vez completado el diseño, las conexiones de acero pueden ser optimizadas con un clic del botón. El programa ajustará automáticamente los tamaños de soldadura y aplicará refuerzos de placa si es necesario. Las conexiones de acero pueden evaluarse con AISC 360-16 permitido o LRFD. Módulo de exportación de modelo 3D y hologramas: Este módulo permite exportar el modelo de excavación profunda a un escritorio 3D, realidad virtual o modelo de realidad aumentada (HoloLens). Visualiza fácilmente el modelo de excavación 3D antes de que se construya y comunica con tus clientes algunas de las complejidades y etapas de construcción. De esta manera, verifica los posibles desafíos de construcción (cimientos de edificios adyacentes, servicios públicos subterráneos, etc.), así como impresiona a los clientes con la vista del proyecto final antes de que se construya. El módulo permite importar edificios 3D de vuelta al entorno de diseño. Módulo de análisis de elementos finitos: DeepFEM, puede añadirse y activarse en cualquier versión del software, permitiendo que se realice el método de análisis de elementos finitos. El método FEM considera la interacción completa suelo-estructura y puede ser utilizado para analizar modelos complicados, pilas de fundaciones adyacentes, túneles y más.
  • SIMULACIÓN Y ANÁLISIS DE TÚNELES - SEM, TBM, CUBIERTA A CIELO ABIERTO
    Modela y analiza túneles TBM, NATM o de Caja con el método de Análisis de Elementos Finitos (Prerrequisitos: Módulo FEM). Los asistentes nos brindan la flexibilidad para crear fácilmente geometrías de túneles ovales y complejas. Las secciones y segmentos de túnel se pueden activar y desactivar en cualquier etapa. Las pérdidas de suelo y el inyectado de presión también pueden ser modelados con facilidad.
  • INFORMES EXPORTADOS EN PDF Y WORD
    DeepEX puede generar informes extensos para todas las secciones de diseño y etapas de construcción examinadas. Los informes en DeepEX son totalmente personalizables: el usuario final siempre puede seleccionar todas las secciones del informe incluidas en el informe final. Los informes de DeepEX pueden incluir tablas y gráficos con todas las propiedades del modelo examinadas y los resultados calculados. También podemos optar por incluir en el informe todas las ecuaciones de diseño estructural y el procedimiento de cálculo. Los informes de DeepEX se pueden previsualizar, exportar a formato PDF o exportar a formato Word, para que puedan ser editados posteriormente por el usuario. Seleccionar Secciones de Diseño para Informar Seleccionar Etapas de Construcción para Informar Personalizar los Gráficos del Informe Definir la Disposición del Informe Definir las Secciones del Informe Posibilidad de Informar Ecuaciones y Cálculos de Etapas Resultados de Estimación de Costos Resultados de Marcos en 2D y 3D Previsualizar el Informe Exportar Informes en formatos PDF y Word
  • INTERFAZ DE SOFTWARE Y CONTROL POR VOZ
    DeepEX ofrece un software extremadamente fácil de usar con una interfaz de modelo interactivo. Puede dibujar soportes, cargas y elementos en el área del modelo para cada etapa de construcción, y realizar gráficamente excavaciones, rellenos y operaciones de desagüe. Todos los elementos en el área del modelo (muros, soportes, nodos superficiales, cargas externas) se pueden acceder con el ratón y sus propiedades pueden cambiarse en cualquier momento mediante diálogos amigables. Genere rápidamente modelos con un asistente poderoso. Finalmente, puede hablar con DeepEX y decirle que prepare un modelo de excavación profunda "Hey DeepEX..." "Crea una excavación de 10 metros de profundidad con puntales".
  • SECCIONES DE DISEÑO MÚLTIPLES Y ETAPAS DE CONSTRUCCIÓN
    Todo su diseño puede estar en un solo archivo. Puede crear un número ilimitado de secciones de diseño en el mismo archivo, simulando todas las secciones de pared del proyecto y diferentes profundidades de excavación. En cada sección de diseño, se pueden definir diferentes parámetros del suelo y estratigrafías, secciones de pared, sistemas de soporte y suposiciones de diseño. Cree un número ilimitado de etapas de construcción, simulando los procedimientos de diseño completos o las condiciones en cada sección de diseño. DeepEX presenta resultados extensos para cada etapa, ayudando a identificar la condición más crítica. Examine fácilmente alternativas dentro de diferentes secciones de diseño. Esto le permite identificar rápidamente la solución de excavación profunda más crítica o más eficiente.
  • Question goes here?
    Answer goes here lorem ipsum dolor sit amet, consectetur adipiscing elit. Aenean finibus commodo nulla. Ut ut accumsan diam, dignissim ultrices turpis. Sed quis bibendum tortor. Ut eu pulvinar augue. Vestibulum at ante risus. Nunc rutrum ante lorem, in fringilla velit porttitor quis. Etiam vulputate mi vel lectus egestas, vel varius purus tempor. Donec neque massa, vestibulum id leo ut, suscipit hendrerit felis. Maecenas sollicitudin libero eu dui bibendum molestie. Etiam sit amet interdum nunc. Curabitur ac consectetur mi. Proin ac posuere est. Duis tincidunt vehicula pellentesque. Suspendisse diam lorem, ultricies in malesuada at, gravida non lorem. Nunc nec ipsum purus. Nullam fringilla, odio non vestibulum facilisis, mi eros blandit nisl, tincidunt maximus metus erat eu magna. Donec quis nisl vitae purus pellentesque rutrum sed vel leo. Donec sed sagittis arcu. Nulla et nunc luctus, laoreet elit vel, porttitor lacus.
  • Question goes here?
    Answer goes here lorem ipsum dolor sit amet, consectetur adipiscing elit. Aenean finibus commodo nulla. Ut ut accumsan diam, dignissim ultrices turpis. Sed quis bibendum tortor. Ut eu pulvinar augue. Vestibulum at ante risus. Nunc rutrum ante lorem, in fringilla velit porttitor quis. Etiam vulputate mi vel lectus egestas, vel varius purus tempor. Donec neque massa, vestibulum id leo ut, suscipit hendrerit felis. Maecenas sollicitudin libero eu dui bibendum molestie. Etiam sit amet interdum nunc. Curabitur ac consectetur mi. Proin ac posuere est. Duis tincidunt vehicula pellentesque. Suspendisse diam lorem, ultricies in malesuada at, gravida non lorem. Nunc nec ipsum purus. Nullam fringilla, odio non vestibulum facilisis, mi eros blandit nisl, tincidunt maximus metus erat eu magna. Donec quis nisl vitae purus pellentesque rutrum sed vel leo. Donec sed sagittis arcu. Nulla et nunc luctus, laoreet elit vel, porttitor lacus.
  • Question goes here?
    Answer goes here lorem ipsum dolor sit amet, consectetur adipiscing elit. Aenean finibus commodo nulla. Ut ut accumsan diam, dignissim ultrices turpis. Sed quis bibendum tortor. Ut eu pulvinar augue. Vestibulum at ante risus. Nunc rutrum ante lorem, in fringilla velit porttitor quis. Etiam vulputate mi vel lectus egestas, vel varius purus tempor. Donec neque massa, vestibulum id leo ut, suscipit hendrerit felis. Maecenas sollicitudin libero eu dui bibendum molestie. Etiam sit amet interdum nunc. Curabitur ac consectetur mi. Proin ac posuere est. Duis tincidunt vehicula pellentesque. Suspendisse diam lorem, ultricies in malesuada at, gravida non lorem. Nunc nec ipsum purus. Nullam fringilla, odio non vestibulum facilisis, mi eros blandit nisl, tincidunt maximus metus erat eu magna. Donec quis nisl vitae purus pellentesque rutrum sed vel leo. Donec sed sagittis arcu. Nulla et nunc luctus, laoreet elit vel, porttitor lacus.
  • Question goes here?
    Answer goes here lorem ipsum dolor sit amet, consectetur adipiscing elit. Aenean finibus commodo nulla. Ut ut accumsan diam, dignissim ultrices turpis. Sed quis bibendum tortor. Ut eu pulvinar augue. Vestibulum at ante risus. Nunc rutrum ante lorem, in fringilla velit porttitor quis. Etiam vulputate mi vel lectus egestas, vel varius purus tempor. Donec neque massa, vestibulum id leo ut, suscipit hendrerit felis. Maecenas sollicitudin libero eu dui bibendum molestie. Etiam sit amet interdum nunc. Curabitur ac consectetur mi. Proin ac posuere est. Duis tincidunt vehicula pellentesque. Suspendisse diam lorem, ultricies in malesuada at, gravida non lorem. Nunc nec ipsum purus. Nullam fringilla, odio non vestibulum facilisis, mi eros blandit nisl, tincidunt maximus metus erat eu magna. Donec quis nisl vitae purus pellentesque rutrum sed vel leo. Donec sed sagittis arcu. Nulla et nunc luctus, laoreet elit vel, porttitor lacus.
  • Question goes here?
    Answer goes here lorem ipsum dolor sit amet, consectetur adipiscing elit. Aenean finibus commodo nulla. Ut ut accumsan diam, dignissim ultrices turpis. Sed quis bibendum tortor. Ut eu pulvinar augue. Vestibulum at ante risus. Nunc rutrum ante lorem, in fringilla velit porttitor quis. Etiam vulputate mi vel lectus egestas, vel varius purus tempor. Donec neque massa, vestibulum id leo ut, suscipit hendrerit felis. Maecenas sollicitudin libero eu dui bibendum molestie. Etiam sit amet interdum nunc. Curabitur ac consectetur mi. Proin ac posuere est. Duis tincidunt vehicula pellentesque. Suspendisse diam lorem, ultricies in malesuada at, gravida non lorem. Nunc nec ipsum purus. Nullam fringilla, odio non vestibulum facilisis, mi eros blandit nisl, tincidunt maximus metus erat eu magna. Donec quis nisl vitae purus pellentesque rutrum sed vel leo. Donec sed sagittis arcu. Nulla et nunc luctus, laoreet elit vel, porttitor lacus.
  • Question goes here?
    Answer goes here lorem ipsum dolor sit amet, consectetur adipiscing elit. Aenean finibus commodo nulla. Ut ut accumsan diam, dignissim ultrices turpis. Sed quis bibendum tortor. Ut eu pulvinar augue. Vestibulum at ante risus. Nunc rutrum ante lorem, in fringilla velit porttitor quis. Etiam vulputate mi vel lectus egestas, vel varius purus tempor. Donec neque massa, vestibulum id leo ut, suscipit hendrerit felis. Maecenas sollicitudin libero eu dui bibendum molestie. Etiam sit amet interdum nunc. Curabitur ac consectetur mi. Proin ac posuere est. Duis tincidunt vehicula pellentesque. Suspendisse diam lorem, ultricies in malesuada at, gravida non lorem. Nunc nec ipsum purus. Nullam fringilla, odio non vestibulum facilisis, mi eros blandit nisl, tincidunt maximus metus erat eu magna. Donec quis nisl vitae purus pellentesque rutrum sed vel leo. Donec sed sagittis arcu. Nulla et nunc luctus, laoreet elit vel, porttitor lacus.
  • RCsolver Features and Capabilities
    - ACI-318, Eurocode 2, Eurocode 8 Specifications. - EC2 national annexes of more than 10 countries. - Superior interactive interface. - Design and evaluate concrete members in minutes. - Powerful options. - Time-saving design approach. - Design and Assessment modes. - Great for engineers, consultants, and contractors. - Quick evaluation of many alternatives. - Full presentation of all main and partial calculations. - Extensive verification and training examples. - Extensive theory manuals. - Great tool for the teaching and learning of concrete design. - Great tool for the quick estimation of existing reinforcement. - Detailed summary reports in word and pdf.
  • Gráficos personalizables
    Con SiteMaster, puedes generar informes temporales personalizables en cualquier profundidad del inclinómetro.
  • Tabla resumen
    SiteMaster compila una tabla resumen para todos los inclinómetros, que presenta el estado actual del proyecto.
  • Mapa del sitio
    Agregue el mapa del sitio directamente desde Google Maps, localice inclinómetros en un mapa y vea los contornos de desplazamiento.
  • Límites de advertencia
    SiteMaster te permite predefinir límites de advertencia de desplazamiento y velocidad. Cuando se excede un límite de advertencia, SiteMaster te advierte con el color de límite apropiado.
  • Escáner de lógica de suma de comprobación:
    SiteMaster examina las lecturas de sumas de comprobación, señalando posibles inconsistencias con colores fáciles de distinguir.
  • Opciones de corrección
    Las correcciones se pueden aplicar a un inclinómetro o a una lectura individual. Las opciones de corrección disponibles incluyen: a) Correcciones espirales b) Correcciones de base transpuesta c) Transposición de puntos a lo largo de la profundidad d) Correcciones rotacionales e) Correcciones de desplazamiento de sesgo f) Ajuste de la constante de la sonda para una lectura individual g) Desplazamientos vectoriales con profundidad
  • Sistema de datos inteligente
    SiteMaster cuenta con un sistema de gestión de datos inteligente y flexible. Los datos críticos se almacenan en archivos XML, y los datos se pueden ajustar fácilmente utilizando el explorador de Windows.
  • Plano clave
    ¿Dónde está ese inclinómetro? Utiliza nuestro plano clave para localizar ese inclinómetro con precisión
  • Plano del sitio
    Puede ingresar una vista del plano del sitio en formato JPEG, personalizar la escala y trazar el progreso del desplazamiento máximo en el plano para todos los inclinómetro
  • Características de Trench 2019
    Estabilidad tridimensional según la norma alemana DIN 4126. Estabilidad bidimensional con cuñas o presiones activas. Cargas en 2D y 3D, incluyendo edificios, etc. Variar densidades de lodos, dimensiones de paneles, etc. Definiciones alternativas de factores de seguridad. Uso de patrones de sobrecarga uniformes o personalizados. Factor de seguridad proporcionado a lo largo de la profundidad de la trinchera. Múltiples combinaciones de análisis con diferentes capas o propiedades. Realizar estudios paramétricos sin cambiar los datos predeterminados. Interfaz de usuario amigable y salidas completas de pantalla e impresora. Unidades métricas e inglesas disponibles.
  • STEELBEAM
    - AISC ASD 9th codes - AISC LRFD 13th - AISC, European, and British steel sections - Check H Beams and Pipe Sections - Section Optimization options - Check multiple sections at once - Full report generation with all equations - Generate reports in Word and Pdf
  • I try to open the program but the main window does not appear in my screen.
    There are a couple of reasons why this might happen: - Your Windows drivers need to be updated. You can run the following file, which is supplementary driver: Update Windows CBIOS Usually this driver upgrade resolves the issue and the software can be accessed normally. The same driver upgrade can assist the Windows in your device to recognise the USB key. In case it's not recognized immediately, or there is an exclamation mark in the device manager of the Operating System for the "Crypto-Box 2 USB" device please let us know, so that we can offer further assistance. - Another instance of the software is still open, or the software was not closed properly. You cannot run 2 instances of the same program. Please take a look at your task bar in case the program is already open. If not, you can take a look at the device's Task Manager. If the program appears open in the background, you can try to force stop it from the Task Manager and try to open it again. - You had an external monitor with higher resolution previously connected. Hover mouse over the taskbar button, wait for the preview small window to appear, right click, select to move the window. Bring it in view either with arrow keys or with the mouse. Arrow keys tend to work better. (try left and up)
  • I can access only the LEM analysis method - the other methods seem unavailable.
    If you see in the Analysis Methods only the LEM option as available, it means that probably during the first use of the program you selected the option to lock all other methods. To reverse that, you can do the following: 1. Open the Documents folder in your pc and locate a subfolder named DeepEXTemporaryFiles 2. Locate and delete a file named AnalysisStartMethod 3. Open the software. A window will pop up, asking you to select which method will be selected each time you open the program (i would recommend to keep selected the option for LEM, as it is the method that you should run first in most cases, but this is up to you). At this point, please make sure that the option far down in this window is NOT SELECTED - this is the option that locks all other methods and allows the use of LEM only.
  • Is DeepEX a Finite Element analysis software?
    DeepEX introduces a new additional module, the Finite Element Analysis. The new module enables users to analyze conditions, that consider full soil-structure-interaction. Elasticty models include Linear elastoplastic, and hyberbolic soil models. With the finite element analysis module activated, the software capabilities are greatly expanded and the software can take into consideration neightbouring structures and foundation piles, analyze SEM and TBM tunnels and much more. With FEM, DeepEX provides practically all methods of analysis for deep excavation design. The basic version does not include Finite Elements, though, our Non-linear analysis engine produces close-to-the-reality wall deflections and wall moments. External comparisons prove that the results using DeepEX are very close to the one produced by other Finite Element analysis programs.
  • Which analysis method should I use?
    The selection of the analysis method is a responsibility of the end user. All methods have certain advantages and limitations, so it is usually highly recommended that we perform all types of analysis and consider the most critical results. Conventional Limit Equilibrium Analysis Method is usually required. Non-linear Analysis Method results are usually more realistic, especially in multi-level excavation projects, since the construction staging is taken into consideration. Finite Element Method is considered to produce very accurate results. It can analyze conditions that consider full soil-structure interaction.
  • What analysis methods do you include in DeepEX software?
    DeepEX Software implements all common methods for the design and analysis of deep excavations systems. In the basic version (software core), the program includes the conventional Limit Equilibrium Method, as well as the Non-linear Analysis method (with use of elastoplastic Winkler springs). Finally, a combined method (LEM+NL) is availabe. With the Finite Element Analysis additional, optional module, the user can include in the software the advanced FEM engine of the software (DeepFEM) and analyze wall systems with the Finite Element Analysis method, considering full soil-structure interaction. Conventional Limit Equilibrium Analysis Method (LEM). Limit equilibrium is an analysis method, where limit state conditions are assumed. For excavations and earth retaining structures this usually means that earth pressures are assumed on both the retained and excavated sides. These pressures may represent a failure state such as active or passive lateral earth pressures, or an assumed redistribution such as diagrams by Peck or FHWA. In Limit Equilibrium Analysis, the retaining wall is analyzed to provide moment and force equilibrium, when possible. Support reactions are also calculated, typically by using the tributary area method. Non-Linear (Beam on elastoplastic foundations) Method (NL). DeepEX implements a non-linear finite element code for the analysis of the mechanical behavior of flexible earth retaining structures during all the intermediate steps of an open excavation. The non-linear engine is empowered by many unique advanced features. DeepEX offers the following elastoplastic soil models: a) Linear elastic - perfectly plastic b) Hyperbolic soil model c) Subgrade reaction soil model d) Small Strain Hardening model On the reloading part, every soil model has a linear reloading elasticity parameter. Such a parameter should typically range from 2 to 4 times the loading elasticity value (with average 3). In excavations, the reloading elasticity parameter typically describes the remaining soil below the excavation while the loading elasticity is mostly applicable for soil on the retained side. In a non-linear analysis the excavatio n models reduced to a plane problem, in which a unit wide slice of the wall is analyzed, as outlined in the Figure below. Therefore, DeepEX is not suitable to model excavation geometries in which three-dimensional effects may play an important role. In the modelling of the soil-wall interaction, the very simple yet popular Winkler approach is adopted. The retaining wall is modelled by means of beam elements with transversal bending stiffness EI; the soil is modelled by means of a double array of independent elastoplastic springs; at each wall grid point, two opposite springs converge at most. Limit Equilibrium and Non-Linear Analysis Combination Method (LEM+NL). In this case, DeepEX will first use the LEM method in order to calculate the wall embedment safety factors, and then will run the analysis with the soil springs in order to calculate all other parameters (support reactions, soil pressures, wall moment and shear stresses, wall displacements etc.). In stepped excavations and deadman wall systems, a part of the passive pressures of the back wall is transferred to the front wall as an active impact load when the LEM or the LEM+NL methods are used. The magnitude of this additional load is affected by several parameters, like the depth of the back wall (thus the passive pressures), the distance between the two walls etc. Finite Element Analysis Method (FEM). FEM analysis can consider all construction stage effects and enables us to model full soil-structure interaction. Soil is modelled with a mesh of quadratic triangular finite elements. DeepEX does all the stiffness calculations and help s us to estimate FEM analysis parameters. In FEM, the soil model of each soil type can be defined easily. DeepEX has implemented several models like Mohr-Coulomb, Soil Hardening, Cam Clay and more. It considers drained and undrained clay behavior and it can perform water flow analysis. DeepFEM can be used within the DeepEX software interactive interface, to analyze composite models like braced excavations with struts and rakers. Anchored walls. Deadman wall systems and more. It can calculate all analysis results – soil and water pressures, wall moment shear and displacement diagrams, support reactions, structural and geotechnical ratios, surface settlements and more. The results can be presented in tables and graphically on the model area for each stage. Limit Equilibrium and Finite Element Combination Method (LEM+FEM). In this case, DeepEX will first use the LEM method in order to calculate the wall embedment safety factors, and then will run the analysis with the finite elements in order to calculate all other parameters (support reactions, soil pressures, wall moment and shear stresses, wall displacements etc.). In stepped excavations and deadman wall systems, a part of the passive pressures of the back wall is transferred to the front wall as an active impact load when the LEM or the LEM+NL methods are used. The magnitude of this additional load is affected by several parameters, like the depth of the back wall (thus the passive pressures), the distance between the two walls etc.
  • What water analysis methods do you include in DeepEX?
    The software offers the following options for modeling groundwater: Hydrostatic: Applicable for both conventional and elastoplastic analysis. In ELP, hydrostatic conditions are modeled by extending the “wall lining” effect to 100 times the wall length below the wall bottom. Figure: Water pressures – Simplified flow Simplified flow: Applicable for both conventional and elastoplastic analysis. This is a simplified 1D flow around the wall. In the NL analysis mode, the traditional NL water flow option is employed. Figure: Water pressures – Hydrostatic pressures Full Flow Net analysis: Applicable for both conventional and elastoplastic analysis. Water pressures are determined by performing a 2D finite difference flow analysis. In NONLINEAR, water pressures are then added by the UTAB command. The flownet analysis does not account for a drop in the phreatic line. Figure: Water pressures – Full flownet User pressures: Applicable for both conventional and NL analysis. Water pressures defined by the user are assumed. In the nonlinear analysis, water pressures are added by the UTAB command. Figure: User defined water pressures options in DeepEX
  • How am I sure that the results produced by DeepEX are accurate?
    We have checked thoroughly all aspects and methods included in DeepEX. We have performed extensive verification examples, matching deflections from real projects throughout the United States. We can provide on demand an extensive verification document, containing a big number of verification examples, comparing software results with manual calculations and calculated deflections with real-project measurements. You can open the software verification document in pdf here:
  • Why does the free length of my tiebacks readjusts when i analyze my model?
    If the anchors free length change each time you run the analysis,despite the user changes, probably you have selected the option to use "Auto Canadian" or "Auto Italian" tiebacks free length in your design. If so, no matter what you define, the software uses the selected method recommendation and readjusts the lengths: This option (the Auto Canadian) is the default when you generate a model with the Wizard and some users do not notice it to change it according to their preference: If you wish to use User-Defined lengths, simply access the Draw Supports drop down in the general tab of the software (as presented in the first image above), and change from your selection to the first option "User". This will keep your changes without adjusting when you run the analysis.
  • How to define custom load combinations in DeepEX?
    1. You need to press on the button "Mult." in the Analysis tab of the software (the load combinations dialog appears) and you can access there the "User-Defined Combinations" tab: 2. In the boxes there you can define the factors manually for each property (the names of the parameters are self-explanatory in most cases): 3. After closing this dialog, you can access the drop down next to the "Single" button in the Analysis tab of the program and assign the User Defined Approach:
  • I receive a warning that "normal pressures below the excavation" are required
    DeepEX software provides a number of warnings after the analysis. Some of these warnings are critical and have to do with check ratios that are not satisfied. These warnings (marked with red) need to be taken seriously under consideration by the user. The software gives some optimization recommendations that can be followed, or the user can edit the model manually. Some of the provided warnings (marked with orange) are usually general recommendations according to general practice, or things to pay attention. This message is one of these non critical recommendations, asking to check that the active pressures below the excavation level at not 0. This can be managed from the Drive pressures drop-down in the Analysis tab of DeepEX, if there is selected the option "Normal" and you see active pressures on the pressure diagrams below the excavation you are fine.
  • How can I change the default DeepEX parameters?
    In order to change the software default settings, the user account has to have admin rights in the device, since the default file is located in the pc program files. The procedure is to start the software as administrator, open the Settings dialog from the Help tab and press to set the current project as default. Please review the steps below: A. With the software closed, take the mouse over the software icon in your Desktop and RIGHT-CLICK on it. B. From the menu that appears, please select to run the software as administrator. C. Then, the Default settings dialog can be accessed in the Help tab of DeepEX, perform the changes and select to set current project as Default. This will change the default file that is loaded when the software normally opens.
  • Can i include all the construction stages in a DeepEX model?
    In DeepEX it is not only available, but also highly recommended to create all intermediate construction stages in an examined project model. The software calculates and presents results for each stage, which is important since the last stage is not always the most critical one. In Limit Equilibrium Method, each stage is independent, thus wall deflections (and likely wall bending moments) are not realistic for cases with multiple supports. In Non-linear and Finite Element analysis methods a strict staging is required so the methods can converge and produce realistic results. With these methods, the initial stage is geostatic without excavation. Wall deflections and wall moments depend on construction staging. Figure: Wall deflection diagram, wall moments and support reactions in different stages
  • Wall embedment Safety Factors in DeepEX
    For the wall embedment, DeepEX calculates the Rotational, Passive and Length FS, taking into consideration the driving and resisting moments and shear forces below the last support, and available length respectively: After the analysis, you can access the Wall embedment FS table results and review what is going on on each wall/ in each stage A general recommendation could be you to locate the most critical (lowest) of the 3 calculated factors in each stage (FSpas, FSrot and FSEmbed or length) and make sure that: 1. In Service Conditions, FSmin > 1.5 in the cantilever excavation stage, FSmin > 1.4 in all other stages with activated supports. 2. When you use Load factors (i.e. AASTHO settings Strength conditions or Eurocode 7 Combinations), FSmin > 1.2 in the cantilever excavation stage, FSmin > 1 in all other stages with activated supports.
  • How are the settlements calculated in DeepEX?
    In DeepEX we provide 3 analysis methods: A. The classical Limit Equilibrium Method (LEM) B. The Non-Linear analysis method with use of elastoplastic Winkler springs (NL) C. The Finite Element Analysis Method (FEM). The FEM engine is available as an additional optional module within the software. About Settlements in DeepEX: - The settlement analysis in LEM is semiempirical. It estimates first horizontal displacements and then goes to estimate Vertical. If corrections to the method by Clough are made (available in the software), then the method is equivalent to the one presented by Storer (see the attached file). - In NL the horizontal displacement is calculated directly from the wall displacement. We have expanded on the NL analysis to consider if the wall base is moving. Then, the displaced horizontal volume is transformed to a settlement volume. - In FEM the settlement contours are calculated automatically.
  • Wall Passive, Active and Water widths in DeepEX
    In DeepEX software, in the wall sections dialog, user can define the wall spacing, as well as, the widths to be used in the calculations of the active, passive and water pressures. The following options are available: - Width d is originally the H beam flange size (if you use H steel beams as soldier piles). These are supposed to be driven piles. If you wish to convert them to drilled piles, you change the width manually to actually specify the diameter of the hole were the steel beam will be installed and covered with concrete. If you do reinforced concrete piles, then directly the width d is the diameterth of the concrete pile. - S is the wall spacing. For diaphragms and sheet piles you can use the value "1 ft" or "1 m" to review the results on screen per ft (or per meter) of the wall. In general, all the result values reported on screen are divided with the wall spacing to be presented /ft (or /m). For secant pile walls you define the center to center distance for every other pile. For tangent and soldier piles you define the center to center distance of each pile. - The Passive, Water and Active widths are the widths used below the excavation for the calculation of passive, water and active pressures respectively. For continuous walls (like secant piles, tangent piles, diaphragms, sheet piles etc), normally you define the same value to all these parameters (Spacing = Water width = Passive width = Active width). For non-continuous wall sections like soldier pile walls, there is no lagging below the excavation. In this case it is recommended to take: For Passive Width: 2.5 to 3 times the pile width d (H beam flange width) (for driven steel piles) or 2.5 to 3 times the pile width d (diameter) (for circular drilled piles). This value is limited by the spacing, so if 2.5*Pile diameter > Spacing, you just use the spacing. For Water and Active width: These should be equal to the flange or pile diameter, depending on the pile type (as above). By pressing the "?" button in the wall sections dialog, all these options are presented and explained.
  • Can I design both permanent and temporary walls in DeepEX?
    DeepEX can design both the temporary and the internal permanent walls. The user can add the permanent walls to the model using the “Draw left/right wall element” tool (see question #16). This allows the user to actually draw an additional wall element that can be placed either along the main wall, or on the left or right side of the main wall. The additional wall elements can be used as main or slave walls. Figure: External permanent and internal permanent walls in a metro station project designed with DeepEX
  • How to adjust the impact load on deadman systems and stepped excavation walls?
    When you have a system of walls like a stepped excavation or a deadman system, then the LEM analysis takes into consideration the interaction between the 2 walls. Basically, depending on the distance of the 2 walls and the height of the back deadman wall, if the passive pressures of the back wall do not have enough space to be distributed into the soil, a portion of them will be added in the active pressures of the front wall as an additional impact load. In DeepEX, this additional load in calculated when you use the Limit Equilibrium method (LEM), or the combination method (LEM+NonLinear analysis), and the impact load is distributed on the wall, affecting directly the active pressures on the front wall. In reality, not all this pressure is transferred. A big portion of it will be actually held by the back wall, because of the back wall passive resistance. This reduction is not taken into consideration automatically in DeepEX. In the program, we have a factor for this case, called Impact Load Adjustment Factor. There is a semi-empirical method that suggests to run the analysis and review the passive wall embedment FS of the back wall, and use a value like 1/FSpassive (or more if you wish to be more conservative) as an impact load adjustment factor.
  • How to apply vertical adhesion for undrained clays in DeepEX?
    To apply vertical adhesion for clays you need to have the Limit Equilibrium Analysis method selected (the adhesion is used in general, just you need to switch to LEM to pass these settings for now). If you do so, then in the same drop down you can define the wall friction, you will see options to use vertical adhesion for clays on each wall side, you can click on the items you wish to apply: Then, you can double-click on the wall and access the "Advanced Features" tab of the dialog that appears, where you can define the vertical adhesion as a percentage of the undrained shear strength, Su:
  • How can i add a CPT log in your software?
    The user can create the file in excel and then export it as tab delimited. The file can be of .txt or .cor format. The files should follow a specific format - 1st row should be parameter names, second row should be the units, and then row by row (without the first column numbering), we need to include four specific columns as presented in the image below: After the cpt log import, the user needs to press on the "Process Data" button, so the rest of the properties are estimated:
  • How does DeepEX take into consideration the loads from adjacent buildings?
    In DeepEX we can inlcude any commom type of external loads, either on the soil suftwace (strip loads or point loads), or loads directly applied on the wall. A building can be added on the model area as an external 3D building load, or simulated as an external strip surcharge: 1. Adding a building load: From the General tab of DeepEX we can select to add a building load and next click on the ground, close to the point where we wish to apply the building load. In the dialog that appears, we can define the exact building position, building size as well as several building properties (number of superstructure/understructure floors, number of columns, beam and column loads etc.): 2. Adding a building as an external strip surcharge: From the General tab of DeepEX, select to add a surface strip surcharge to the model: Click on the model surface on 2 points, close where you wish to apply the building load: In the dialog that appears we can define the exact load possition, magnitude and type (permanent/temporary). In addition, if we wish to include the building foundation, we can unselect the option “Is Surface”. This way we can also edit the load elevation, defining the foundation level for the load application.
  • Can DeepEX consider a sealed excavation?
    In the Analysis tab of DeepEX, we can choose to create a sealed excavation (create a liner effect). Figure: Sealed excavation option in DeepEX Figure: Water pressure diagram when sealed excavation option is selected
  • What are the implemented methods for the earth coefficients Ka and Kp?
    In general, we recommend you to use either the Automatic method for the earth coefficients, or the User Mode, where you can select the method for the calculation of Ka Kp. Ideally, you can define the soil properties you wish (friction angle and wall friction) and see directly the calculated earth coefficients on the model area for each soil type. With a few tries, you can define realistic soil properties: Automatic Mode (Recommended): If you select the Automatic approach (which is recommended), the software uses the following methods (according to the defined model options - straight or inclined surfaces, use of wall friction or not, use of seismic pressures or not): A tool that can help you estimate the properties a bit faster can appear if you type in the Command line of the software (below the stages) the command KA ESTIMATE and press enter. In that dialog you can try sets of friction angles/wall frictions and see fast the calculated Ka properties with different methods (what interests you is the Kah = horizontal component). A similar tool appears for Kp if you use the command KP ESTIMATE and press enter. User Mode: In User mode, you can step in and select the method for each wall driving and resisting side independently. Manual Mode - NOT RECOMMENDED - Works ONLY with NL Analysis The Manual is used only for Non-Linear analysis and it is recommended ONLY for cases like very rough surfaces, where the wedge analysis fails to find suitable Ka/Kp values. There you could make totally horizontal surfaces, apply 0 wall friction etc, and let the software use the user-defined Ka Kp from the soils dialog. You can find more information in the following article/video: https://www.deepex.com/training/examples/advanced-video-examples/lateral-earth-coefficients-soil-pressures-deepex
  • Can I add an external surcharge in my DeepEX model?
    In DeepEX software, we can add a series of external surcharges on the model area, in order to simulate any potential traffic loads, construction loads, adjacent structures and more that can affect our excavation site. External loads can graphically be added in the model area, using the draw loads tools provided in the General tab of DeepEX. Adds a surface surcharge (define the start and end point of the surcharge). Adds a surface line load (click a surface point to add a point load). Adds a surcharge on the wall (define two wall points to add a surcharge). Adds a line load on the wall (define a wall point to add a wall point load) Adds a prescribed condition at a wall (click on the wall to add a prescribed condition). A prescribed condition is a predefined displacement or wall rotation (non-linear analysis) Adds a footing load (3D) (define a point where to install a footing load). Creates a new building (define a point where to install a building). Adds a 3D surface load (click on it and draw a 3D load in the Plan view screen). Click to manage the elastic load options (see paragraph 4.8). Edit load combinations. Load combinations are user defined combinations where a load can be selected manually if it is favorable or unfavorable. Assign a load combination. With this option, a load combination can be assigned to a specific design section.
  • How can i apply an axial load on a wall & calculate the axial capacity?
    A. Adding an Axial Load You can add a Linear Load on the wall and define the Pz component (vertical load magnitude): B. Calculating Axial Load Diagrams In the Design tab of the software, you need to select the option "Include axial load on wall" (else the axial load will not be examined). C. Defining Geotechnical Capacity Options: In the Stability+ tab of the software, you can select the option "Calculate Axial Geotechnical Capacity". In the same area, you can also set the Pile Calculation Settings, Select the pile installation method and Edit the method options: D. Including Soil/Wall Skin Friction (for concrete walls) When we are using any type of concrete walls (secant/tangent piles, diaphragm walls, drilled soldier piles (covered with concrete) etc) and we wish to calculate the axial pile capacity, we also need to access the Bond tab in the Soil Types dialog and set the ultimate bond resistance value. E. Reviewing the Axial load and Axial Capacity Results When we have selected to include axial loads on the wall and we have used a vertical load (or a load with a vertical component), we can see the Axial load diagram in the Results tab of the software. In the same diagram we can also see the calculated design and ultimate geotechnical capacities (if we selected so from the Stability+ menu - See C above).
  • Can I include more than one wall types or wall sections in the same model?
    In DeepEX, the user can create several wall sections that can be assigned independently to any wall on the model area (in the same or different examined 2D sections) or to additional wall elements. The list of wall sections is global in the specific project file, meaning that the same or any sections from the list can be used in different walls of different design sections. This allows the user to check fast different alrernatives for the project surrounding walls, use different walls in different project locations, create composite models, as well as design in the same model a temporary excavation and the internal permanent walls. Figure: Wall sections in DeepEX
  • Can I design a braced excavation using DeepEX?
    DeepEX can design excavations braced with steel struts and rakers. User can define multiple strut levels, as well as the strut and waler sections. The 3D Frame analysis module of DeepEX can be used to simulate the full shaft with all bracing for each support level. Figure: Braced excavation in DeepEX – Design Section A braced excavation can be created either by using the DeepEX Model Wizard, or manually in the model area with the tools included in the General tab of DeepEX. If you create the model manually(model is manually created), then you have to include the following stages(the following stages need to be included): 1. Initial Stage: Define wall section properties, soil properties and stratigraphy. No excavation should be performed in the initial stage. 2. Excavation Stage: Excavate between the two walls to an elevation below the desired strut installation level. (Repeat for each support level) 3. Support Installation Stage: Draw a strut support, connecting the two walls. You can define the exact strut elevation on the wall, the exact spacing between the strut and the strut section properties. (Repeat for each support level) 4. Final Excavation Stage: In this stage you should excavate to the desired final excavation elevation.
  • Can I design a top-down excavation using DeepEX?
    DeepEX can be used for the design and analysis of top-down excavation systems, braced with concrete slabs. Basement and intermediate floor slabs can be added as supports and they can be designed with DeepEX. Figure: Top-down excavation with concrete slabs in DeepEX A top-down excavation can be created either by using the DeepEX Model Wizard , or manually in the model area with the tools included in the General tab of DeepEX. If model is manually created, then the following stages need to be included: 1. Initial Stage: Define wall section properties, soil properties and stratigraphy. No excavation should be performed in the initial stage. 2. Excavation Stage: Excavate between the two walls to an elevation below the desired slab installation level. (Repeat for each support level) 3. Support Installation Stage: Draw a slab support, connecting the two walls. You can define the exact slab elevation on the wall and the slab section properties. (Repeat for each support level) 4. Final Excavation Stage: In this stage you should excavate to the desired final excavation elevation.
  • How can i design a gravity retaining wall with DeepEX?
    DeepEX software can design gravity retaining walls of any shape. This option is available with the additional Gravity Wall module. User has the flexibility to create basic types of retaining walls such as full gravity or with stem. Flexural, reinforcement can be included where ever desired. A gravity wall can also be used as a pier or an abutment wall with piles. The use of gravity wall in the model can be defined in the “Edit wall data” dialog of DeepEX (Figure 1). When the Gravity wall module is activated, there appears the option “Use gravity wall section”. The “Edit wall data” dialog appears when user double-clicks on the wall in the Model area of DeepEX. Figure 1: The Edit wall data dialog with “Use gravity wall section” option. Then the following option is selected, user should press on the button Edit Section Data. This will cause the “Retaining wall data” dialog to appear (Figure 2). Here, the user can define the retaining wall dimensions and reinforcement. Figure 2: Retaining Wall Data Dialog Depending on the selected wall type on the left side of this dialog, several dimension properties are available to be defined (Table 1). The reference coordinate for a gravity wall is taken as the left most corner of the stem (or top of wall). This coordinate is defined from the main wall data dialog. Height - Total wall height (excluding the key if used) Base - Total base wall width Top width- Top of the wall width Dist. To top left corner - Distance to top left corner from the far left side of the wall Heel thick - Base thickness on the driving side Toe width - Distance from the end of the main wall body to the end of the wall toe Toe thick - Base thickness on the resisting side The following retaining wall types are available in DeepEX: Calculate Driving Pressures from edge of wall: In the default mode, stability safety factors are calculated from soil and other pressures directly acting on the driving wall sides. While this assumption gives very good, approximate results, in theory the driving horizontal pressures can be taken at the wall edge. By selecting this option, safety factors are calculated by pressures acting directly on a vertical wall edge that is defined from the left most base coordinate if pressures are driving from left to right or the right most coordinate if pressures are driving from right to left. If this option is selected, then driving soil pressures on this vertical edge are always taken as Active or At-rest. The reinforcement data table enables the use of reinforcing bars on each wall face. Please note that DeepEX does not account for development lengths and reinforcement bending. It is the final responsibility of the engineer to decide how reinforcement has to be bent, cut, or shaped for fabrication. DeepEX though will calculate and report all bending and shear capacities.
  • Can the wall section change along the wall depth?
    We can change the wall section with depth with the "Additional Wall Elements" tool of the software. This allows the user to actually draw an additional wall element that can be placed either along the main wall, or on the left or right side of the main wall. The additional wall elements can be used as main or slave walls: A. Double click on the wall, edit the wall section and create all the wall sections that you need to use in your model. B. Define the position, top elevation and depth of the main left wall. C. Press on the arrow next to the option Edit 1st wall of the General tab of DeepEX and select to Draw left wall element (see figure below). D. Draw an additional wall element below the main wall (click on 2 points). In the dialog that appears, define the wall section and position of the additional wall.
  • Can I design a circular shaft using DeepEX?
    DeepEX can design circular shafts, either cantilever, or supported by ring beams and cap beams. Figure: Circular excavation with cap beam and ring concrete support in DeepEX A circular shaft model can be created with the DeepEX Model Wizard. As shown on the instructions below: Open DeepEX Wizard and select the required unit system. Figure: Define model unit system Select the analysis method, and the desired classical earth and water pressures method. Figure: DeepEX Wizard – Welcome tab Select the project type and define the basic project properties (final excavation depth, wall length, circular shaft radius, tip of the wall elevation and water table). Figure: DeepEX Wizard – Dimensions tab Define the project soil properties and stratigraphy. Figure: DeepEX Wizard – Soil Layers tab Define the wall section properties. Figure: DeepEX Wizard – Wall Type tab Define supports (cap beam, liner walls, ring beam supports). Figure: DeepEX Wizard – Supports tab Define depth for each support level. Figure: DeepEX Wizard – Stages tab Define surcharges. Figure: DeepEX Wizard – Surcharges tab Define structural and geotechnical codes. Figure: DeepEX Wizard – Codes tab
  • Can I design a bin-type wall using DeepEX?
    DeepEX can design bin-type walls. The two main walls can be connected with tierods and user can choose to excavate outside the walls. Figure: Bin type wall design in DeepEX A bin-type can be created either by using the DeepEX Model Wizard, or manually in the model area with the tools included in the General tab of DeepEX. If the model is created manually, then the following stages need to be included: 1. Initial Stage: Define wall section properties, soil properties and stratigraphy. No excavation should be performed in the initial stage. 2. Excavation Stage: Excavate outside the two walls to an elevation below the desired tierod installation level. (Repeat for each support level) 3. Support Installation Stage: Draw a tierod, connecting the two walls. You can define the exact tierod elevation on the wall and the tierod section properties. (Repeat for each support level) 4. Final Excavation Stage: In this stage you should excavate to the desired final excavation elevation.
  • Can I design a cantilever excavation using DeepEX?
    DeepEX can design cantilever excavations. In Limit Equilibrium Analysis, user can select to use either the Free or the Fixed Earth Method for the cantilever calculations. Figure: Cantilever excavation in DeepEX
  • Can I design a dead-man wall using DeepEX?
    DeepEX can design dead-man wall systems. The software takes into consideration the earth and water pressures, the external loads, as well as the interaction between the two walls. Figure: Dead-man wall design in DeepEX A dead-man wall can be created either by using the DeepEX Model Wizard, or manually in the model area with the tools included in the General tab of DeepEX. When the model is manually created, then the following stages need to be included: 1. Initial Stage: Define wall section properties, soil properties and stratigraphy. No excavation should be performed in the initial stage. 2. Support Installation Stage: In this stage you should draw a ground anchor support (tierod), connecting the two walls. You can define the exact tierod elevation on the wall, the exact spacing between the tierods and the tieback section properties. 3. Backfill Stage: Backfill between the two walls up to the top of the wall elevation. 4. Final Excavation Stage: Excavate to the desired final excavation elevation.
  • Which wall types can I design using DeepEX?
    DeepEX software can design any common wall type in minutes. The user can select the preferred wall type and define fast the wall section properties (dimensions, reinforcement, materials). The following wall types are available: Soldier pile and lagging walls (supported by reinforced concrete piles, prestressed concrete piles, concrete piles with GFRP, H steel beams, steel pipes, steel channels, rectangular hollow steel sections, timber piles and more) Secant and Tangent pile walls (with steel reinforcement or steel sections) Sheet pile walls - Steel Sheets and Timber Sheet Piles Diaphragms (Slurry) walls - Reinforced Concrete Walls Soldier pile and tremied concrete walls (SPTC) Combined sheet pile walls (I beams or pipes combined with sheet piles) Box sheet pile walls Custom walls, that can be used to simulate any other wall type. Figure: Wall types in DeepEX
  • Can DeepEX perform lagging calculations for soldier pile walls?
    The lagging is not included in the wall analysis - it is used to transfer the loads on each pile and then the software does the full design of the piles. DeepEX estimates the lagging loads and does some basic lagging checks. Typically the lagging is a simply supported beam, but the load can be modified within the program. The default is uniform, but is can be reduced or converted from uniform to other: After the analysis, in the Analysis and Checking summary table that appears, you can select to display the "One Design Section" from the list on the left, select your design section and select to review the Lagging Estimation: The end user needs to select to include in the report the related available report section, so these checks are reported:
  • Pressure widths in the wall sections dialog
    Wall Section Parameters for each wall case: A. Horizontal Spacing S This is the distance taken into consideration in the calculations. It is important, because it is used to divide the calculated moments, shears etc, presenting the results per foot (or per meter) of the wall. A.1. Continuous walls (concrete diaphragms - slurry walls , sheet piles): It is recommended to use as spacing 1ft (or 1m). A.2. Continuous walls (secant piles): The spacing is the center-to-center distance between the reinforced piles. A.3. Continuous walls (tangent piles): The spacing is the center-to-center distance between every pile. A.4. Non-Continuous walls (soldier piles - combined sheet piles): The spacing is the center-to-center distance between every pile. B. Width D This parameter is the actual wall width (thickness). B.1. Continuous walls (concrete diaphragms - slurry walls): The width is the concrete section thickness (defined by the end user). B.2. Continuous walls (Sheet piles): The width is the equivalent wall thickness (defined automatically by the selected steel-section, only graphical). B.3. Secant - Tangent piles - Soldier pile wall supported by reinforced concrete piles: The width is the diameter of each pile (defined by the end user). B.4. Soldier pile wall supported by steel sections - Combined sheet pile walls: By default, the steel sections are considered driven, and the Width value is defined as the maximum section dimension of the selected steel beam section (Flange - Web), or the steel pipe diameter. If we will to use steel sections in drilled holes below the excavation with concrete cover, then we can manually change the width D, to define the hole diameter. C. Active and Water width This is the width for the calculation of the active and water pressures below the excavation where there is no lagging (for soldier pile walls). C.1. Continuous walls (diaphragms, sheet piles, secant/tangent piles): It is recommended to use the wall Spacing (as defined above). C.2. Non-Continuous walls (soldier piles, combined sheet piles): It is recommended to use the Width value (as defined above). D. Passive width This is the width for the calculation of the passive pressures below the excavation where there is no lagging (for soldier pile walls). D.1. Continuous walls (diaphragms, sheet piles, secant/tangent piles): It is recommended to use the wall Spacing (as defined above). D.2. Non-Continuous walls (soldier piles, combined sheet piles): It is recommended to use 2.5 to 3 times the Width value (as defined above). This value (2.5 or 3*D) is limited by the defined Spacing, so if 2.5*D > Spacing, use the Spacing. Combined Sheet Pile Walls The combined sheet pile walls (king piles) are a combination of steel sections (H piles or pipes), with sheet piles that are used as lagging. Default - Continuous Wall In DeepEX, the sheet piles extend up to the pile tip elevation by default, so the wall is considered to be a continuous wall along the full wall depth. The pile tip elevation (bottom of the wall) is calculated automatically, since we defile the wall top elevation and the total wall depth. In that case, we need to specify the wall spacing and thickness as defined above in A.4 and B.4, and then we have to use the Spacing value to all active, passive and water widths). Non-Continuous Wall If we wish to stop the sheet pile sections to a specific elevation, higher than the pile tip elevation, we have to make the following changes: 1. For the active, water and passive widths below the excavation, we have to use the pile width as defined in C.2 and D.2 above. 2. The Custom Elev. Value in the Edit Wall dialog (appears when we double-click on a wall), is the elevation until which the sheet piles are extended. Below this elevation, the active, passive and water widths will be used as defined in (1) right above.
  • Can DeepEX optimize the wall length?
    The software provides two options for the wall embedment optimization in Limit Equilibrium Analysis: A. Define the wall depth manually and check the calculated wall embedment safety factors. After the analysis is performed, the Analysis summary table appears. There wecan review the most critical results among all stages. We have to make sure that all 3 wall embedment factors (length, passive, rotational) are above a limit (typically this could be 1 , 1.2, 1.3, 1.5 depending how you design). After we close this summary table, we can still open the Wall Embedment FS results in the results tab of DeepEX for each stage: B. Automatic wall embedment software optimization use: When using the Limit Equilibrium Method (LEM), the wall length can be optimized based on the wall embedment safety factors. This option can be located at the Design Tab of DeepEX and it is available only when LEM analysis is selected. There, the required safety factor can be defined for the cantilever stage and for the supported excavation stages. The software will change the wall length to achieve the wanted wall embedment FS.
  • Can DeepEX optimize the wall section?
    DeepEX offers optimization tools that can help the user to optimize the wall and support sections. Though, the user should select the original wall type and run the analysis. The software keeps the wall type and proposes wall sections that offer enough structural capacity. The user can select the ideal section from lists of suitable sections presented by the software. Figure: Optimization tools of DeepEX Figure: Option to optimize the wall section in DeepEX Figure: Proposed steel beam sections from wall section optimization
  • Which structural codes do you include in DeepFND and HelixPile?
    The following interational structural design codes are implemented in our software and allow the design of any pile structural section (Steel, Concrete, Timber Sections): ACI 318-11 and 318-19 (Reinforced Concrere Members) ASD 1989 (Allowable Stress Design - Steel Members) AASHTO LRFD 13th Edition (Steel Members) AISC 360 and 360-Allowable (2010 and 2016) Australian Standards (AS 3600, AS/NZS 4100) EUROCODE 2, 3 and 8 Specifications - Several national annexes are implemented
  • What is the difference between DeepFND and HelixPile?
    DeepFND and HelixPile are two similar, powerful software programs for the design and evaluation pile foundations. The programs can perform structural and geotechnical, lateral, and axial analysis of any foundation pile (single piles, pile groups and pile rafts). The only difference between the two programs is the available pile types. DeepFND can design all pile sections and pile types (helical and non-helical – drilled, driven, caissons, micropiles, CFA piles and more), whereas HelixPile can design only helical piles.
  • Which Geotechnical Codes - Load Combinations can i include in my model?
    DeepFND and HelixPile software programs implement the load combinations according to the following geotechnical codes: AASHTO LRFD 6, 8, 9, AASHTO 17, AASHTO GFRP-2 CALRANS LRFD PEN DOT AASHTO European Codes (DIN, BS, XP94, DM, DA) Chinese Standards (CN) Eurocode 7 Load Combinations
  • Does your program check the structural capacities of the piles as well?
    DeepFND and HelixPile software have implemented several structural codes used worldwide. The software do all calculations according to the selected standard and calculate the pile moment and shear capacities. All structural design checks and equations can be included in the software reports. Figure: Pile Moment, Shear and Displacement Diagrams - DeepFND
  • What type of Pile Analysis can your software do?
    Our foundation piles design software DeepFND and HelixPile can perform axial and lateral analysis of any pile type. The programs can calculate the pile shaft resistance and the bearing capacity of the piles, taking into consideration the pile installation method. In addition, the software can do lateral pile analysis, calculating the pile displacements, moment and shear diagrams for any applied load combination on the pile head.
  • What happens if my local country's codes are not implemented in your software?
    Our development team we can implement specific codes upon request. All we need from the client is a copy of the code recommendations in pdf format. Typically, the code implementation can be finished within some working days.
  • What pile types can i design with your software programs?
    DeepFND software can be used for the design of any foundation pile and support system. DeepFND implements all approved scientific methods for the design of deep foundation piles. With DeepFND we can design drilled piles, driven piles, CFA piles,caissons, drilled-in-displacement piles, micropiles and helical piles. Drilled Piles Driven Piles Drilled-In-Displacement Piles CFA Piles Micropiles Caissons Helical Piles On the other hand, both our foundation pile design software programs - DeepFND and HelixPile - can design helical piles (steel pipes, square solid and square hollow sections with helical plate configurations). Figure: Non-Helical Pile Types (DeepFND) Figure: Helical Pile Types (DeepFND and HelixPile)
  • Can your software design pile caps with a group of piles?
    Our foundation pile design software can design single foundation piles, pile groups and pile rafts. The following pile cap shapes are available: Rectangular Pile Caps Triangular Pile Caps Circular Pile Caps Hexagonal Pile Caps Octagonal Pile Caps User-Defined Perimeter Pile Caps Pile Rafts The user can create a concrete cap of any shape and define the pile configuration (pile locations and structural sections). The program can calculate the load that is transfered on each pile, considering the pile location and analyze all piles. Figure: A Rectangular Cap with Concrete Piles - DeepFND Figure: A Circular Cap with Helical Piles - DeepFND and HelixPile
  • How can I change the default Software parameters?
    In order to change the software default settings, the user account has to have admin rights in the device, since the default file is located in the pc program files. The procedure is to start the software as administrator, open the Settings dialog from the Help tab and press to set the current project as default. Please review the steps below: A. With the software closed, take the mouse over the software icon in your Desktop and RIGHT-CLICK on it. B. From the menu that appears, please select to run the software as administrator. C. Then, the Default settings dialog can be accessed in the Help tab of the software, perform the changes and select to set current project as Default. This will change the default file that is loaded when the software normally opens.
  • How can I change the default Software parameters?
    In order to change the software default settings, the user account has to have admin rights in the device, since the default file is located in the pc program files. The procedure is to start the software as administrator, open the Settings dialog from the Help tab and press to set the current project as default. Please review the steps below: A. With the software closed, take the mouse over the software icon in your Desktop and RIGHT-CLICK on it. B. From the menu that appears, please select to run the software as administrator. C. Then, the Default settings dialog can be accessed in the Help tab of the software, perform the changes and select to set current project as Default. This will change the default file that is loaded when the software normally opens.
  • Which Geotechnical Codes - Load Combinations can i include in my model?
    DeepFND and HelixPile software programs implement the load combinations according to the following geotechnical codes: AASHTO LRFD 6, 8, 9, AASHTO 17, AASHTO GFRP-2 CALRANS LRFD PEN DOT AASHTO European Codes (DIN, BS, XP94, DM, DA) Chinese Standards (CN) Eurocode 7 Load Combinations
  • What pile types can i design with your software programs?
    DeepFND software can be used for the design of any foundation pile and support system. DeepFND implements all approved scientific methods for the design of deep foundation piles. With DeepFND we can design drilled piles, driven piles, CFA piles,caissons, drilled-in-displacement piles, micropiles and helical piles. Drilled Piles Driven Piles Drilled-In-Displacement Piles CFA Piles Micropiles Caissons Helical Piles On the other hand, both our foundation pile design software programs - DeepFND and HelixPile - can design helical piles (steel pipes, square solid and square hollow sections with helical plate configurations). Figure: Non-Helical Pile Types (DeepFND) Figure: Helical Pile Types (DeepFND and HelixPile)
  • Which structural codes do you include in DeepFND and HelixPile?
    The following interational structural design codes are implemented in our software and allow the design of any pile structural section (Steel, Concrete, Timber Sections): ACI 318-11 and 318-19 (Reinforced Concrere Members) ASD 1989 (Allowable Stress Design - Steel Members) AASHTO LRFD 13th Edition (Steel Members) AISC 360 and 360-Allowable (2010 and 2016) Australian Standards (AS 3600, AS/NZS 4100) EUROCODE 2, 3 and 8 Specifications - Several national annexes are implemented
  • What happens if my local country's codes are not implemented in your software?
    Our development team we can implement specific codes upon request. All we need from the client is a copy of the code recommendations in pdf format. Typically, the code implementation can be finished within some working days.
  • INTERFAZ INTERACTIVA SUPERIOR
    SnailPlus es un software extremadamente amigable, que ofrece una interfaz de modelo interactiva. En el área del modelo podemos crear todas las etapas y definir todos los parámetros del proyecto (cargas externas, secciones de clavos de suelo, secciones de hormigón proyectado, etc.) gráficamente. Todos los elementos en el área del modelo (sondeo, clavos de suelo, revestimiento) pueden ser accedidos y sus propiedades pueden ser definidas a través de diálogos amigables para el usuario.
  • EXPORTAR INFORMES EN PDF Y MS WORD
    Los informes de SnailPlus pueden incluir tablas y gráficos con todas las propiedades del modelo examinadas y los resultados calculados. También podemos optar por incluir en el informe todas las ecuaciones de diseño estructural y el procedimiento de cálculo. Los informes de SnailPlus se pueden previsualizar, exportar en formato PDF o exportar en formato Word, para que puedan ser editados posteriormente por el usuario. Seleccionar Secciones de Diseño para el Informe Seleccionar Etapas de Construcción para el Informe Personalizar los Gráficos del Informe Definir la Distribución del Informe Definir las Secciones del Informe Posibilidad de Incluir Ecuaciones y Cálculos de Etapa en el Informe Previsualizar el Informe Exportar Informes en Formatos PDF y Word
  • PROPIEDADES DEL SUELO - REGISTROS SPT - REGISTROS CPT
    Los tipos de suelo, las propiedades del suelo y las estratigrafías pueden definirse fácilmente en SnailPlus mediante diálogos amigables para el usuario. En SnailPlus podemos crear una lista ilimitada de suelos y definir todas las propiedades del suelo rápidamente. El software proporciona varias herramientas de estimación (Estimador SPT y herramientas de estimación parcial para cada propiedad utilizando métodos y ecuaciones científicas). En SnailPlus podemos agregar directamente Registros SPT y Registros CPT, que pueden ser utilizados desde el software para estimar diversas propiedades del suelo. Definir lista de tipos de suelo Definir lista de estratigrafías (sondeos) Herramientas de estimación de propiedades del suelo Registros SPT Registros CPT
  • Modelo Wizard -Cree un modelo en segundos
    Modelo Wizard de SnailPlus se puede utilizar para crear cualquier superficie inclinada con todas las etapas de construcción, excavaciones e instalación de clavos de suelo y revestimientos en minutos. Podemos usar las pestañas del asistente para definir todos los parámetros del proyecto (parámetros de la superficie inclinada, clavos de suelo - placas de cabeza y secciones estructurales de hormigón proyectado, opciones de etapa y estándares de diseño). El Asistente crea el modelo automáticamente, ahorrándonos mucho tiempo y esfuerzo para la creación inicial.
  • CÓDIGOS DE DISEÑO ESTRUCTURAL Y GEOTÉCNICO
    HelixPile ha implementado muchos códigos y estándares internacionales de diseño para el diseño y análisis (estructural y geotécnico) de los pilotes helicoidales. En HelixPile podemos realizar un diseño de servicio o con factores utilizando normas de EE.UU. y Europa. Podemos seleccionar y cambiar fácilmente entre varios códigos estructurales de EE.UU., Europa, Australia y China. ACI 318-11 (Miembros de Hormigón Armado) ASD 1989 (Diseño por Esfuerzos Admisibles - Miembros de Acero) AASHTO LRFD 13ª Edición (Miembros de Acero) AISC 360 y 360-Admisible (2010 y 2016) Especificaciones EUROCODE 2, 7 y 8 Combinaciones de Cargas de AASHTO LRFD Códigos Europeos (DIN, BS, XP94, DM, DA) Normas Australianas (AS 3600, AS/NZS 4100) Normas Chinas (CN)
  • GRUPOS DE PILOTES - LOSAS SOBRE PILOTES
    HelixPile puede diseñar tanto Pilotes Helicoidales Individuales como Grupos de Pilotes con múltiples pilotes (se requiere el módulo opcional adicional Grupos de Pilotes). El software también puede diseñar Balsas de Pilotes, considerando el efecto combinado del suelo bajo la balsa (módulo adicional a nuestra opción de Grupo de Pilotes). Pilotes Helicoidales Individuales Tapas de Pilotes Rectangulares Tapas de Pilotes Triangulares Tapas de Pilotes Circulares Tapas de Pilotes Hexagonales Tapas de Pilotes Octagonales Tapas de Pilotes con Perímetro Definido por el Usuario Balsas de Pilotes
  • TIPOS DE PILOTES Y CONFIGURACIONES DE HÉLICE
    HelixPile puede realizar un diseño completo tanto vertical como lateral de pilotes helicoidales. Los pilotes helicoidales en HelixPile pueden ser de cualquier forma típica (tubos, secciones cuadradas sólidas y secciones cuadradas huecas). En cada pilote podemos definir y asignar un número ilimitado de configuraciones de hélice. Los pilotes pueden ser inyectados. Finalmente, podemos usar una carcasa externa en la cabeza del pilote, aumentando la capacidad lateral del pilote. Tubos de acero Secciones cuadradas sólidas de acero Secciones cuadradas huecas de acero Configuraciones de hélice ilimitadas por pilote Pilotes inyectados Uso de carcasa de acero externa
  • ANÁLISIS AXIAL Y LATERAL DE PILOTES
    HelixPile puede realizar análisis tanto verticales como laterales de pilotes. HelixPile utiliza tanto los métodos de la placa individual como del cilindro, reportando los resultados más críticos. Se pueden seleccionar las ecuaciones generales y las de Helicap. Para el diseño de pilotes verticales, podemos optar por utilizar el método de Vesic o el de Meyerhoff-Hansen. HelixPile calcula y verifica el torque de instalación de los pilotes helicoidales. Para el análisis lateral de pilotes, HelixPile puede usar la carga definida en la cabeza del pilote y calcular los diagramas de momento desarrollado, cortante y desplazamiento del pilote, o puede realizar un análisis de empuje, calculando y presentando la carga lateral requerida para alcanzar un desplazamiento especificado de la cabeza del pilote. HelixPile puede realizar análisis de asentamiento. En el software podemos seleccionar uno de los criterios de aceptación de pilotes implementados, o definir nuestro propio criterio.
  • INTERFAZ INTERACTIVA SUPERIOR
    HelixPile es un software extremadamente fácil de usar, que ofrece una interfaz de modelo interactiva. En el área del modelo podemos crear diferentes etapas de carga y definir todos los parámetros del proyecto (cargas externas en la cabeza del pilote, propiedades de la sección del pilote, etc.) gráficamente. Todos los elementos en el área del modelo (perforación, pilote, cargas externas) pueden ser accedidos y sus propiedades pueden ser definidas a través de diálogos amigables.
  • INFORMES EXPORTADOS EN PDF Y WORD
    HelixPile puede generar extensos informes para todas las secciones de diseño examinadas (pilotes) y etapas de carga. Los informes en HelixPile son totalmente personalizables: el usuario final siempre puede seleccionar todas las secciones del informe incluidas en el informe final. Los informes de HelixPile pueden incluir tablas y gráficos con todas las propiedades del modelo examinado y los resultados calculados. También podemos optar por incluir en el informe todas las ecuaciones de diseño estructural y el procedimiento de cálculo. Los informes de HelixPile pueden ser previsualizados, exportados a formato PDF o Word, de modo que pueden ser editados posteriormente por el usuario. Seleccione secciones de diseño para informar Seleccione etapas de construcción para informar Personalice los gráficos del informe Defina el diseño del informe Defina las secciones del informe Posibilidad de informar ecuaciones y cálculos de etapas Vista previa del informe Exportar informes en formatos PDF y Word
  • GENERACIÓN Y OPTIMIZACIÓN AUTOMÁTICA DE MODELOS DE AUTOMÓVILES
    El Asistente de Modelo de HelixPile puede usarse para crear cualquier modelo de fundación profunda en minutos. Podemos usar las pestañas del asistente para definir todos los parámetros del proyecto (configuraciones de análisis, tipo de pilote y sección estructural, cargas externas y normas de diseño). El asistente crea automáticamente el modelo, ahorrándonos mucho tiempo y esfuerzo en la creación inicial. HelixPile cuenta con una herramienta de optimización automática de longitud. El software puede usar un paso definido para aumentar la profundidad del pilote hasta un límite de profundidad definido, calculando la capacidad de tensión y compresión axial en cada paso.
  • PROPIEDADES DEL SUELO - REGISTROS SPT - REGISTROS CPT
    Los tipos de suelos, propiedades de suelos y estratigrafías pueden ser fácilmente definidos en HelixPile a través de diálogos amigables. En HelixPile podemos crear una lista ilimitada de suelos y definir rápidamente todas las propiedades del suelo. El software proporciona varias herramientas de estimación (Estimador SPT y herramientas de estimación parcial para cada propiedad usando métodos y ecuaciones científicas). En HelixPile podemos añadir directamente Registros SPT y Registros CPT, que pueden ser utilizados por el software para estimar diversas propiedades del suelo. Definir lista de tipos de suelo Definir lista de estratigrafías (perforaciones) Herramientas de estimación de propiedades del suelo Registros SPT Registros CPT
  • TIPOS DE MURO MÚLTIPLES
    El software QuayWalls puede diseñar cualquier tipo de sección de muro de muelle de gravedad, calculando las presiones del suelo, agua, olas y sísmicas sobre el sistema de muro. QuayWalls se puede utilizar para el diseño y análisis de: Muros cantiléver Muros segmentados Muros de cajón de caja con zonas de relleno de suelo Muros en forma de T Muros definidos por el usuario
  • PRESIONES DE OLAS Y REBASE
    QuayWalls puede calcular las presiones de las olas utilizando varios métodos establecidos. Las alturas iniciales de las olas y las longitudes de onda se pueden estimar con recomendaciones implementadas, o definidas manualmente por el usuario a través de un diálogo amigable. Finalmente, QuayWalls puede estimar automáticamente las tasas de flujo de rebase, ya que puede realizar cálculos de volumen de rebase promedio utilizando las ecuaciones de PROVERBS. Goda SainFlou Manual de Ingeniería Costera 2011 Allsop PROVERBS
  • ANÁLISIS DE ESTABILIDAD DE TALUDES Y DISEÑO DE CLAVOS DE SUELO
    SnailPlus global stability of slope surfaces (simple or reinforced with soil nails). SnailPlus can calculate and report the most critical slope surface and the slope stability safety factor with the use of several scientific methods. Soil nails can be used in the slope surfaces. SnailPlus calculates the effects of the soil nails to the slope stability analysis. Método de Bishop Método Morgenstern-Price (Equilibrio Límite General) Método de Spencer Normas francesas Clouterre para el diseño de clavos de suelo
  • DISEÑO COMPLETO DEL REVESTIMIENTO DE SHOTCRETE
    SnailPlus puede diseñar el revestimiento de shotcrete. También se pueden definir y analizar revestimientos de dos etapas (temporales y permanentes) con el software. SnailPlus realiza verificaciones en las placas de cabeza de los clavos de suelo. Diseño del revestimiento de shotcrete Revestimiento de dos etapas disponible Verificaciones de placas de cabeza
  • CÓDIGOS DE DISEÑO Y ESPECIFICACIONES
    SnailPlus ha implementado diversos estándares y especificaciones para el diseño de clavos de suelo y revestimientos de shotcrete. En SnailPlus podemos seleccionar especificaciones de ACI y FHWA para el diseño estructural. En el software podemos utilizar métodos de Estado Límite de Servicio o Estado Límite Último. Método Directo ACI Métodos FHWA y FHWA LRFD LRFD WSDOT 2019 (GDM) Factores de seguridad ASD LRFD FHWA GEC-7 EUROCODE 7 - Enfoque ULS
  • OPCIONES DE BÚSQUEDA DE SUPERFICIES DE TALUD MÚLTIPLES
    SnailPlus puede localizar e informar sobre la superficie de talud más crítica utilizando diversos métodos de búsqueda de superficies de talud: Superficies de Talud Circulares Superficies Circulares con Cuñas Activas y/o Pasivas Método Automático de Búsqueda de Superficies Métodos de Búsqueda de Superficies Trilineales Superficies con falla tipo bloque Superficies de Talud Definidas por el Usuario
  • What is the difference between DeepFND and HelixPile?
    DeepFND and HelixPile are two similar, powerful software programs for the design and evaluation pile foundations. The programs can perform structural and geotechnical, lateral, and axial analysis of any foundation pile (single piles, pile groups and pile rafts).The only difference between the two programs is the available pile types. DeepFND can design all pile sections and pile types (helical and non-helical – drilled, driven, caissons, micropiles, CFA piles and more), whereas HelixPile can design only helical piles.
  • Does your program check the structural capacities of the piles as well?
    DeepFND and HelixPile software have implemented several structural codes used worldwide. The software do all calculations according to the selected standard and calculate the pile moment and shear capacities. All structural design checks and equations can be included in the software reports. Figure: Pile Moment, Shear and Displacement Diagrams - DeepFND
  • Can your software design pile caps with a group of piles?
    Our foundation pile design software can design single foundation piles, pile groups and pile rafts. The following pile cap shapes are available: Rectangular Pile Caps Triangular Pile Caps Circular Pile Caps Hexagonal Pile Caps Octagonal Pile Caps User-Defined Perimeter Pile Caps Pile Rafts The user can create a concrete cap of any shape and define the pile configuration (pile locations and structural sections). The program can calculate the load that is transfered on each pile, considering the pile location and analyze all piles. Figure: A Rectangular Cap with Concrete Piles - DeepFND Figure: A Circular Cap with Helical Piles - DeepFND and HelixPile
  • What type of Pile Analysis can your software do?
    Our foundation piles design software DeepFND and HelixPile can perform axial and lateral analysis of any pile type. The programs can calculate the pile shaft resistance and the bearing capacity of the piles, taking into consideration the pile installation method. In addition, the software can do lateral pile analysis, calculating the pile displacements, moment and shear diagrams for any applied load combination on the pile head.
  • How is the pile cap modelled, rigid or finite stiffness?
    The pile cap is modelled with quadrilateral shell finite elements. The user can post process stress resultants and displacement of the cap.
  • What type of loads can i add on a single pile?
    In DeepFND and HelixPile software, we can add axial loads, lateral loads and external moments on both directions on each single pile head. In addition, we can add a distrubuted lateral load along the pile (user-defined elevations and magnitude). The following list summarizes the loads that can be applied on each axis. - Axial Loads (Z Axis) In DeepFND and HelixPile we can add axial loads on the pile head. A positive axial load magnitude is a compression load (downwards) and a negative magnitude is a tension load (uplift). - Lateral Loads (X Axis) The X-Axis is along the screen. A positive magnitude is a left-to-right load, and a negative magnitude is a right-to-left load. - Lateral Loads (Y Axis) The Y-Axis is on the perpendicular direction of the screen. A positive magnitude is an inwards load, and a negative magnitude is an outwards load (from the screen to the user). - External Moments (X and Y Axis) The external moments on each direction can be defined for each stage. A positive moment magnitude is a counter-clockwise moment, a negative value is a closkwize moment.
  • Which structural section types can i use in DeepFND?
    DeepEX software can design any common pile type in minutes. The user can select the preferred pile type and define fast the wall section properties (dimensions, reinforcement, materials). The following pile types are available: Typical piles (drilled, driven, CFA, Caisons etc) can be of any typical shape (circular, square, hollow) reinforced concrete, structural steel or timber (wood). The pile can be normal or belled type. We can define composite pile sections and we can change the pile section along the pile depth. Helical piles in DeepFND can be of any typical shape (pipes, square solid and square hollow sections). In each pile we can define and assign and unlimited number of helix configurations. The piles can be grouted. Finally, we can use external casing on the pile head, increasing the pile lateral capacity. Helical piles (pipes, square solid or square hollow sections) Reinforced concrete piles (circular or square section) Prestressed Concrete & Sections with GFRP and CFRP Steel beams (H piles, pipes, channel sections) Belled type piles Timber piles (wood) Steel core piles Composite piles
  • Can i check a certain pile under different load combinations?
    In DeepFND and HelixPile software, the user can add construction stages in any foundation pile section model. The stages in our foundation pile design programs work as loading stages, we can access and define tha axial tension and compression loads, as well as, the lateral loads and external moments for different stages and the software will calculate the pile capacities for all load combinations. Figure: Pile Loading in different stages
  • How can i add a CPT log in your software?
    The user can create the file in excel and then export it as tab delimited. The file can be of .txt or .cor format. The files should follow a specific format - 1st row should be parameter names, second row should be the units, and then row by row (without the first column numbering), we need to include four specific columns as presented in the image below: After the cpt log import, the user needs to press on the "Process Data" button, so the rest of the properties are estimated:
  • Is it possible to view the Moment and shear and interaction diagrams used to calculate reinforcement?
    In DeepFND we can view the interaction diagrams for each concrete section. We can also view Moment and shear along the pile, with the capacity indicated with the red lines left and right of the M and Q diagrams. All diagrams, including the interaction diagrams can be included in the exported reports.
  • For a piled raft, how is the influence of the raft on the soil taken into account?
    When the raft option is enabled the soil beneath the cap is considered through a non-linear Winkler base (either elastoplastic or exponential plastic formulation based on user selection). Influence of the raft on the soil is taken into account through the automatic configuration of the free length of the internal piles based on the intersection between the pile influence regions. The soil enclosed within the free length region is considered to be moving along with the cap and piles , thus shear resistance contribution along the perimeter of the piles within the free length region is considered to be zero.
  • Can i create and save my own piles with helix configurations in DeepFND & HelixPile?
    DeepFND and HelixPile software programs can design any common helical pile shape (pipes, square solid and square hollow sections). We can easily select the section shape and define the section parameters (dimensions, material properties etc). On each created pile section, we can fast generate several helix configurations, by defining the number of helixes, the helix plate diameter and thickness, and the plate spacing. All the generated helix configurations can be saved on a partial database, unique for each generated pile. Later, we can simply access and assign one of the generated helix configurations to the pile. We can select to use an external casing on any helical pile, in order to increase the lateral pile capacity. We simply need to define the casing section and the length from the pile top, where the casing is placed. The generated helical pile sections can be saved in a folder in any local device, and they can be loaded in any software file. Finally, any pile in DeepFND and HelixPile can be grouted. For grouted piles, we need to define the grout diameter, and the part of the pile which is grouted.
  • What type of loads can i add on a pile cap?
    In DeepFND and in HelixPile, we can define several loads on a pile cap, as follows: A. Single load at the pile cap centroid This is the default option in the software Wizard. The user can automatically define the maximum axial load on the cap, the maximum lateral loads and external moments on each direction (X and Y axis), as well as the torsional moment that can be applied on the cap. B. Point Loads on User-Defined Locations This option allows the user to create load groups of point loads and define the load coordinates, as well as the magnitude of the axial load, and the lateral load and moment at every axis (X and Y). C. Area Loads on the Pile Cap This option allows the user to assign an area pressure load on the whole cap surface, or at user-defined locations. D. Linear Loads on the Pile Cap This option allows the user to assign linear loads between 2 user-defined points on the pile cap.
  • What in the Max Stress Check result i get in the summary table after the analysis?
    The maximum stress check result is the most critical of all structural and geotechnical checks. DeepFND calculates all and reports there the most critical one (biggest). In general, all checks in the program are (applied force/Capacity). So, Max Stress Check is the most critical of: 1. (Maximum Compression Load) / (Compression Capacity) (Geotechnical check) 2. (Maximum Tension Load) / (Tension Capacity) (Geotechnical check) 3. (Maximum plate reaction) / (Plate Ultimate Capacity) (Structural Check) 4. (Maximum Pile Moment) / (Pile Moment Capacity) (Structural Check)
  • How is the structural resistance determined?
    The structural capacity is calculated in accordance to the standards selected by the user and the nature of the section (concrete, steel, timber, composite etc). The user can define the structural section (concrete piles with internal reinforcing cage, steel casing, drivel steel beams with or without concrete covers, timber piles and then the software uses the corresponding design codes.
  • What theory is used for the lateral pile load analysis?
    The software uses P-Y curves to simulate the soil, while an Euler-Bernoulli beam (elastic or inelastic pile behaviour with distributed plasticity along the pile) is used for the pile. A full FEM analysis engine is currently under development and will be implemented in the DeepFND/HelixPile 2021 versions.
  • How does DeepFND consider the pile cap side lateral response (if the cap is inside the soil)?
    For the lateral resistance contribution of the cap there are 2 mechanisms that need to be included, (a) the passive resistance and (b) the bottom/side friction resistance of the pilecap. We have incorporated an automatic calculation of all the lateral springs of a pile cap. The constitutive laws of the pilecap lateral springs used in the software are illustrated bellow:
  • Is pile to pile interaction taken into account and how?
    The user has a number of options available for the consideration of the group interaction factors. The automatic approach corresponds to the methodology proposed in [1], however an extension has been implemented where influence between piles with different dimensions is taken into account.
  • GRUPOS DE PILOTES - LOSAS SOBRE PILOTES
    DeepFND puede diseñar tanto pilotes individuales como grupos de pilotes con múltiples pilotes (se requiere el módulo opcional adicional Grupos de Pilotes). El software también puede diseñar losas sobre pilotes, considerando el efecto combinado del suelo debajo de la losa (módulo adicional a nuestra opción de grupo de pilotes). Pilotes individuales Cabezas de pilotes rectangulares Cabezas de pilotes triangulares Cabezas de pilotes circulares Cabezas de pilotes hexagonales Cabezas de pilotes octogonales Cabezas de pilotes con perímetro definido por el usuario Losas sobre pilotes
  • CAPACIDAD GEOTÉCNICA - TIPOS DE PILAS
    DeepFND implementa todos los métodos científicos aprobados para el diseño de pilas de cimentación profunda. Con DeepFND podemos diseñar pilas perforadas, pilas hincadas, pilas CFA, cajones, pilas perforadas con desplazamiento, micropilotes y pilotes helicoidales. Pilas Perforadas Pilas Hincadas Pilas Perforadas con Desplazamiento Pilas CFA Micropilotes Cajones Pilotes Helicoidales Normas Implementadas: FHWA GEC8 & GEC 10 AASHTO Norlund AASHTO LRFD O’Neil y Reese FHWA 1999
  • DISEÑO ESTRUCTURAL
    DeepFND incorpora muchos códigos y normas de diseño internacionales para el diseño y análisis (estructural y geotécnico) de todos los tipos de pilotes de muro. En DeepFND podemos realizar un diseño de servicio o un diseño factorizado utilizando las normas de EE. UU. y Europa. Podemos seleccionar y cambiar fácilmente entre varios códigos estructurales de EE. UU., Europa, Australia y China. ACI 318-11 y 318-19 (Miembros de Hormigón Armado) ASD 1989 (Diseño de Esfuerzo Admisible - Miembros de Acero) AASHTO LRFD 13ª Edición (Miembros de Acero) - AISC 360 y 360 Allowable (2010 y 2016) Especificaciones de EUROCODE 2, 7 y 8 AASHTO LRFD 6ª, 8ª y 9ª - PEN DOT AASHTO Códigos Europeos (DIN, BS, XP94, DM, DA) Normas Australianas (AS 3600, AS/NZS 4100) Normas Chinas (CN) Código de Edificación de NYC Normas IBC 2015
  • ANÁLISIS AXIAL Y LATERAL DE PILOTES
    DeepFND realiza análisis de pilotes verticales y laterales e incluye varias ecuaciones de capacidad de carga. Recomendaciones sencillas le ayudan a seleccionar el método apropiado dependiendo del tipo de pilote y del método de instalación. Para pilotes regulares: DeepFND implementa múltiples normas de instalación de pilotes (FHWA GEC-8 y 10, AASHTO Norlund, IBC, Código de Edificación de NYC, AASHTO LRFD y más). Para pilotes helicoidales, el software utiliza tanto los métodos de placa individual como de cilindro, reportando el más crítico. Se pueden seleccionar las ecuaciones generales y Helicap. Para el diseño de pilotes verticales, podemos elegir usar ya sea el método de Vesic, o el método de Meyerhoff-Hansen. DeepFND calcula y verifica el torque de instalación de los pilotes helicoidales. Para el análisis lateral de pilotes, DeepFND puede usar la carga definida en la cabeza del pilote y calcular los diagramas de momento desarrollado, corte y desplazamiento del pilote, o puede realizar un análisis de empuje, calculando y presentando la carga lateral requerida para lograr un desplazamiento específico de la cabeza del pilote. DeepFND puede realizar análisis de asentamiento. En el software podemos seleccionar uno de los criterios de aceptación de pilotes implementados, o definir el nuestro.
  • PROPIEDADES DEL SUELO - REGISTROS SPT - REGISTROS CPT
    Los tipos de suelo, las propiedades del suelo y las estratigrafías se pueden definir fácilmente en DeepFND a través de diálogos amigables para el usuario. En DeepFND podemos crear una lista ilimitada de suelos y definir todas las propiedades del suelo rápidamente. El software proporciona varias herramientas de estimación (Estimador SPT y herramientas de estimación parcial para cada propiedad utilizando métodos científicos y ecuaciones). En DeepFND podemos añadir directamente registros SPT y registros CPT, que se pueden utilizar desde el software para estimar varias propiedades del suelo. Definir lista de tipos de suelo Definir lista de estratigrafías (sondeos) Herramientas de estimación de propiedades del suelo Registros SPT Registros CPT
  • INTERFAZ INTERACTIVA SUPERIOR
    DeepFND es un software extremadamente fácil de usar, que ofrece una interfaz de modelo interactiva. En el área del modelo podemos crear diferentes etapas de carga y definir todos los parámetros del proyecto (cargas externas en la cabeza del pilote, propiedades de la sección del pilote, etc.) gráficamente. Todos los elementos en el área del modelo (sondeo, pilote, cargas externas) se pueden acceder y sus propiedades se pueden definir a través de cuadros de diálogo fáciles de usar.
  • GENERACIÓN Y OPTIMIZACIÓN AUTOMÁTICA DE MODELOS DE AUTOMÓVILES
    El asistente de modelos DeepFND se puede utilizar para crear cualquier modelo de cimentación profunda en cuestión de minutos. Podemos utilizar las pestañas del asistente para definir todos los parámetros del proyecto (configuraciones de análisis, tipo de pilote y sección estructural, cargas externas y normas de diseño). El asistente crea el modelo automáticamente, lo que nos ahorra mucho tiempo y esfuerzo para la creación inicial. DeepFND cuenta con una herramienta de optimización automática de longitud. El software puede usar un paso definido para aumentar la profundidad de los pilotes hasta un límite de profundidad definido, calculando la capacidad de tensión y compresión axial en cada paso.
  • INFORMES EXPORTADOS EN PDF Y WORD
    DeepFND puede generar informes extensos para todas las secciones de diseño examinadas (pilotes) y etapas de carga. Los informes en HelixPile son totalmente personalizables: el usuario final siempre puede seleccionar todas las secciones del informe incluidas en el informe final. Los informes de DeepFND pueden incluir tablas y gráficos con todas las propiedades del modelo examinado y los resultados calculados. También podemos optar por incluir en el informe todas las ecuaciones de diseño estructural y el procedimiento de cálculo. Los informes de DeepFND se pueden previsualizar, exportar a formato PDF o exportar a formato Word, para que puedan ser editados posteriormente por el usuario. Seleccionar Secciones de Diseño para Informar Seleccionar Etapas de Construcción para Informar Personalizar Gráficos de Informes Definir el Diseño del Informe Definir las Secciones del Informe Posibilidad de Informar Ecuaciones y Cálculos de Etapas Previsualizar el Informe Exportar Informes en Formatos PDF y Word
  • Estructuras - Códigos y normativas geotécnicas
    Las excavaciones profundas requieren el cumplimiento tanto de normas estructurales como geotécnicas. Te cubrimos con numerosos códigos de diseño y normas internacionales para el diseño y análisis (estructural y geotécnico) de todos los tipos de muros y sistemas de soporte. Puedes realizar un diseño de servicio o factorizado con normas estadounidenses, europeas, australianas o chinas y seleccionar y cambiar fácilmente entre varios estándares de código: ACI 318 2019 (Miembros de hormigón armado) ASD 1989 (Diseño por Esfuerzos Permisibles - Miembros de acero) AASHTO LRFD 9ª Edición (Miembros de acero) AISC 360 y 360-Allowable (2010 y 2016) Especificaciones EUROCODIGO 2, 3, 7 y 8 Combinaciones de carga AASHTO LRFD 9ª Combinaciones de carga CALTRANS LRFD 2012 Combinaciones de carga PEN DOT AASHTO 2012 Códigos europeos (DIN, BS, XP94, DM, DA) BS 6349 Partes 1-2 (Estructuras marinas-Muros de muelle) Códigos canadienses (CSA, NR24-28-2018) Normas australianas (AS 3600, AS/NZS 4100) Normas chinas (CN)
  • MÉTODOS DE ANÁLISIS: LEM, No Lineal, FEM+
    DeepEX implementa todos los métodos científicos aprobados para el diseño de proyectos de excavación profunda. Realice fácilmente un análisis clásico de equilibrio límite, un método de análisis no lineal con resortes Winkler elastoplásticos (viga sobre cimientos elastoplásticos), o un análisis completo de elementos finitos. Un análisis de elementos finitos se puede realizar si agrega y activa nuestro motor de análisis de elementos finitos DeepFEM en cualquier versión de DeepEX: Método de Análisis de Equilibrio Límite (LEM) Método de Análisis No Lineal (NL) Método de Análisis de Elementos Finitos (FEM) - Análisis Combinado (LEM+NL) Análisis Combinado (LEM+FEM)
  • ANÁLISIS DE ELEMENTOS FINITOS 3D
    Genera, analiza y diseña modelos de excavación 3D a gran escala de manera transparente con nuestro potente motor de Análisis de Elementos Finitos 3D. Genera cualquier modelo FEM 3D en segundos con nuestros potentes asistentes Creación y edición de modelos paramétricos – accede y edita todos los elementos en el área del modelo en segundos Realiza FEM 3D considerando la interacción completa suelo-estructura Revisa los resultados en tablas para todas las paredes, puntales y soportes Realiza comprobaciones estructurales en todos los soportes y puntales Revisa las sombras FEM 3D para suelo, paredes y soportes en todas las etapas
  • SISTEMAS DE SOPORTE EN DEEPEX
    Realiza tanto el diseño estructural como geotécnico de muchos sistemas de soporte diferentes. Puedes añadir soportes gráficamente en el área del modelo y modificar fácilmente haciendo doble clic. Cambia fácilmente las secciones de soporte con una extensa base de datos de secciones de acero implementada. Excavaciones en Voladizo Excavaciones Ancladas (Anclajes, Anclajes Helicoidales) Excavaciones Apuntaladas (Pilares y Tirantes de Acero) Cofradías Pilares y Tableros Mecánicos e Hidráulicos Excavaciones de Arriba hacia Abajo (Losas de Concreto Armado) Excavaciones Escalonadas Losas de Concreto para Sótanos Amarres y Pilotes debajo de Losas de Base Pilotes de Cimentación para Estabilidad de Taludes Columnas de Acero Verticales Soportes Fijos y de Resorte Sistemas de Muro de Hombre Muerto Sistemas de Muro de Tipo Bin Excavaciones de Tipo Caja (Tableros de Acero o Concreto) Pozos Circulares
  • MUROS GRAVITACIONALES - MUROS MARINOS - APOYOS DE PILAS - MSE
    DeepEX permite el diseño de Muros de Contención Gravitacionales, Soportes de Pilas y Muros Marinos con los correspondientes módulos adicionales opcionales que pueden ser activados dentro del software. Módulo de Muros Gravitacionales: Permite el diseño de muros de contención gravitacionales de concreto armado de cualquier forma (muros continuos o pilares 3D), calculando los factores de seguridad de deslizamiento, carga y vuelco del muro. Módulo de Apoyos de Pilas: Permite el uso de pilotes de cimentación en secciones de muro gravitacional (creando apoyos de pilas) y cimentaciones de pilotes adyacentes al sitio de excavación. El módulo permite el cálculo de las fuerzas en cada pilote y el diseño lateral y vertical de los pilotes (cálculo de momentos de pilote, cortante y diagramas de desplazamiento, así como el cálculo de la capacidad de carga de los pilotes). Prerrequisito: Módulo de muros gravitacionales Módulo de Muros Marinos - Presiones de Oleaje - Sobrepaso: Permite el diseño de muros marinos, muros de bloques/segmentos con resistencias cortantes individuales y densidades, muros de cajones de muelle (3D) con relleno y más, el cálculo de las presiones del oleaje con Sainflou, McConnel, Proverbios, Combinaciones de carga para British Standards 6349 Partes 1-2 (Estructuras Marinas-Muros de Muelle) y más. Prerrequisito: Módulo de muros gravitacionales Módulo de MSE Muros - Refuerzos de Suelo: Permite el diseño de terraplenes con refuerzos de suelo (rejillas y tiras de acero, georedes, geotextiles) y columnas de piedra. Los refuerzos de suelo pueden ser utilizados para estabilizaciones de taludes. Prerrequisito: Módulo de muros gravitacionales
  • TIPOS DE PAREDES EN DEEPEX
    DeepEX puede ser utilizado para el diseño y análisis de todos los tipos de paredes comúnmente utilizados. Define las propiedades de la sección de la pared de manera eficiente a través de diálogos fáciles de usar y actualiza fácilmente las listas de materiales estructurales con materiales nuevos o estándar. Una extensa base de datos de refuerzo de barras de acero y secciones de acero te cubre para trabajar en cualquier parte del mundo. Paredes de Pilotes Militares y Encofrado Paredes de Tablestacas (Acero, Madera, Vinilo) Paredes de Pilotes Secantes - Paredes de Pilotes Tangentes Paredes de Diafragma de Concreto (Paredes de Lodo) Paredes Combinadas de Tablestacas (Sistema de Pila Rey - tablestaca) Tablestacas en Caja Paredes de Pilotes Militares y Concreto Vaciado con Tremie (Paredes SPTC) Paredes y Pilotes Pretensados y de GFRP
  • PROPIEDADES DEL SUELO - REGISTROS SPT - REGISTROS CPT
    Los tipos de suelos, las propiedades del suelo y las estratigrafías se pueden definir fácilmente en DeepEX a través de diálogos amigables para el usuario. Cree una lista ilimitada de tipos de suelo y defina rápidamente todas las propiedades del suelo. Estime rápidamente las propiedades del suelo con varias herramientas de estimación (SPT, Estimador CPT y otras herramientas con métodos y ecuaciones de estimación aceptadas por la industria). El módulo adicional, Informe de Estimación del Suelo y Análisis Estadístico, le permite realizar un análisis estadístico de los parámetros del suelo estimados con una amplia gama de métodos. El análisis estadístico nos permite estimar la variabilidad de las propiedades del suelo con la profundidad o en el plano del proyecto. Luego, puede seleccionar los valores de diseño deseados en función del nivel de confianza deseado. En DeepEX, podemos agregar directamente registros SPT y registros CPT, que pueden ser utilizados desde el software para estimar diversas propiedades del suelo.
  • ANÁLISIS DE LA ESTABILIDAD DE LA LADERA Y ANCLAJE DE SUELOS
    DeepEX implementa herramientas que pueden evaluar la estabilidad global de modelos de excavación y superficies de ladera (simples o reforzadas con anclajes de suelo). DeepEX puede calcular e informar sobre la superficie de ladera más crítica y el factor de seguridad de estabilidad de la ladera con el uso de varios métodos científicos. Los anclajes de suelo pueden ser utilizados en las superficies de ladera. DeepEX calcula los efectos de los anclajes de suelo en el análisis de estabilidad de la ladera. Método de Bishop Método de Morgenstern-Price (Equilibrio Límite General) Método de Spencer Método Sueco Ordinario (método de cortes) Normas francesas Clouterre para el diseño de anclajes de suelo
  • SECCIONES CORTADAS EN 2D Y MODELOS DE EXCAVACIÓN EN 3D
    Afronta desafíos de diseño adicionales con módulos DeepEX adicionales. No todas las excavaciones profundas requieren las mismas capacidades. Puedes ampliar las capacidades de tu solución con las siguientes versiones/módulos de DeepEX: DeepEX 2D: Para el diseño y optimización de todas las secciones de diseño de proyectos en 2D. DeepEX 3D: Exporta el modelo de marco 3D con todos los niveles de refuerzo, para que se pueda calcular el proyecto completo con todos los soportes. Con DeepEX 3D también podemos realizar una estimación del costo total para el proyecto completo. Se pueden añadir módulos adicionales en cualquiera de las versiones principales de DeepEX (2D y 3D), aumentando las capacidades del software: - Módulo de exportación de dibujos a DXF: Con este módulo todas las secciones 2D para todas las etapas de construcción y secciones de pared pueden ser exportadas a DXF y abiertas en cualquier software CAD. En DeepEX 3D, la misma característica puede ser utilizada para la exportación del plan completo del proyecto y vistas laterales. Módulo de conexión de acero: Permite generar fácilmente todas las conexiones de acero para walers a puntales y walers de esquina. Una vez completado el diseño, las conexiones de acero pueden ser optimizadas con un clic del botón. El programa ajustará automáticamente los tamaños de soldadura y aplicará refuerzos de placa si es necesario. Las conexiones de acero pueden evaluarse con AISC 360-16 permitido o LRFD. Módulo de exportación de modelo 3D y hologramas: Este módulo permite exportar el modelo de excavación profunda a un escritorio 3D, realidad virtual o modelo de realidad aumentada (HoloLens). Visualiza fácilmente el modelo de excavación 3D antes de que se construya y comunica con tus clientes algunas de las complejidades y etapas de construcción. De esta manera, verifica los posibles desafíos de construcción (cimientos de edificios adyacentes, servicios públicos subterráneos, etc.), así como impresiona a los clientes con la vista del proyecto final antes de que se construya. El módulo permite importar edificios 3D de vuelta al entorno de diseño. Módulo de análisis de elementos finitos: DeepFEM, puede añadirse y activarse en cualquier versión del software, permitiendo que se realice el método de análisis de elementos finitos. El método FEM considera la interacción completa suelo-estructura y puede ser utilizado para analizar modelos complicados, pilas de fundaciones adyacentes, túneles y más.
  • SIMULACIÓN Y ANÁLISIS DE TÚNELES - SEM, TBM, CUBIERTA A CIELO ABIERTO
    Modela y analiza túneles TBM, NATM o de Caja con el método de Análisis de Elementos Finitos (Prerrequisitos: Módulo FEM). Los asistentes nos brindan la flexibilidad para crear fácilmente geometrías de túneles ovales y complejas. Las secciones y segmentos de túnel se pueden activar y desactivar en cualquier etapa. Las pérdidas de suelo y el inyectado de presión también pueden ser modelados con facilidad.
  • INFORMES EXPORTADOS EN PDF Y WORD
    DeepEX puede generar informes extensos para todas las secciones de diseño y etapas de construcción examinadas. Los informes en DeepEX son totalmente personalizables: el usuario final siempre puede seleccionar todas las secciones del informe incluidas en el informe final. Los informes de DeepEX pueden incluir tablas y gráficos con todas las propiedades del modelo examinadas y los resultados calculados. También podemos optar por incluir en el informe todas las ecuaciones de diseño estructural y el procedimiento de cálculo. Los informes de DeepEX se pueden previsualizar, exportar a formato PDF o exportar a formato Word, para que puedan ser editados posteriormente por el usuario. Seleccionar Secciones de Diseño para Informar Seleccionar Etapas de Construcción para Informar Personalizar los Gráficos del Informe Definir la Disposición del Informe Definir las Secciones del Informe Posibilidad de Informar Ecuaciones y Cálculos de Etapas Resultados de Estimación de Costos Resultados de Marcos en 2D y 3D Previsualizar el Informe Exportar Informes en formatos PDF y Word
  • INTERFAZ DE SOFTWARE Y CONTROL POR VOZ
    DeepEX ofrece un software extremadamente fácil de usar con una interfaz de modelo interactivo. Puede dibujar soportes, cargas y elementos en el área del modelo para cada etapa de construcción, y realizar gráficamente excavaciones, rellenos y operaciones de desagüe. Todos los elementos en el área del modelo (muros, soportes, nodos superficiales, cargas externas) se pueden acceder con el ratón y sus propiedades pueden cambiarse en cualquier momento mediante diálogos amigables. Genere rápidamente modelos con un asistente poderoso. Finalmente, puede hablar con DeepEX y decirle que prepare un modelo de excavación profunda "Hey DeepEX..." "Crea una excavación de 10 metros de profundidad con puntales".
  • SECCIONES DE DISEÑO MÚLTIPLES Y ETAPAS DE CONSTRUCCIÓN
    Todo su diseño puede estar en un solo archivo. Puede crear un número ilimitado de secciones de diseño en el mismo archivo, simulando todas las secciones de pared del proyecto y diferentes profundidades de excavación. En cada sección de diseño, se pueden definir diferentes parámetros del suelo y estratigrafías, secciones de pared, sistemas de soporte y suposiciones de diseño. Cree un número ilimitado de etapas de construcción, simulando los procedimientos de diseño completos o las condiciones en cada sección de diseño. DeepEX presenta resultados extensos para cada etapa, ayudando a identificar la condición más crítica. Examine fácilmente alternativas dentro de diferentes secciones de diseño. Esto le permite identificar rápidamente la solución de excavación profunda más crítica o más eficiente.
  • Question goes here?
    Answer goes here lorem ipsum dolor sit amet, consectetur adipiscing elit. Aenean finibus commodo nulla. Ut ut accumsan diam, dignissim ultrices turpis. Sed quis bibendum tortor. Ut eu pulvinar augue. Vestibulum at ante risus. Nunc rutrum ante lorem, in fringilla velit porttitor quis. Etiam vulputate mi vel lectus egestas, vel varius purus tempor. Donec neque massa, vestibulum id leo ut, suscipit hendrerit felis. Maecenas sollicitudin libero eu dui bibendum molestie. Etiam sit amet interdum nunc. Curabitur ac consectetur mi. Proin ac posuere est. Duis tincidunt vehicula pellentesque. Suspendisse diam lorem, ultricies in malesuada at, gravida non lorem. Nunc nec ipsum purus. Nullam fringilla, odio non vestibulum facilisis, mi eros blandit nisl, tincidunt maximus metus erat eu magna. Donec quis nisl vitae purus pellentesque rutrum sed vel leo. Donec sed sagittis arcu. Nulla et nunc luctus, laoreet elit vel, porttitor lacus.
  • Question goes here?
    Answer goes here lorem ipsum dolor sit amet, consectetur adipiscing elit. Aenean finibus commodo nulla. Ut ut accumsan diam, dignissim ultrices turpis. Sed quis bibendum tortor. Ut eu pulvinar augue. Vestibulum at ante risus. Nunc rutrum ante lorem, in fringilla velit porttitor quis. Etiam vulputate mi vel lectus egestas, vel varius purus tempor. Donec neque massa, vestibulum id leo ut, suscipit hendrerit felis. Maecenas sollicitudin libero eu dui bibendum molestie. Etiam sit amet interdum nunc. Curabitur ac consectetur mi. Proin ac posuere est. Duis tincidunt vehicula pellentesque. Suspendisse diam lorem, ultricies in malesuada at, gravida non lorem. Nunc nec ipsum purus. Nullam fringilla, odio non vestibulum facilisis, mi eros blandit nisl, tincidunt maximus metus erat eu magna. Donec quis nisl vitae purus pellentesque rutrum sed vel leo. Donec sed sagittis arcu. Nulla et nunc luctus, laoreet elit vel, porttitor lacus.
  • Question goes here?
    Answer goes here lorem ipsum dolor sit amet, consectetur adipiscing elit. Aenean finibus commodo nulla. Ut ut accumsan diam, dignissim ultrices turpis. Sed quis bibendum tortor. Ut eu pulvinar augue. Vestibulum at ante risus. Nunc rutrum ante lorem, in fringilla velit porttitor quis. Etiam vulputate mi vel lectus egestas, vel varius purus tempor. Donec neque massa, vestibulum id leo ut, suscipit hendrerit felis. Maecenas sollicitudin libero eu dui bibendum molestie. Etiam sit amet interdum nunc. Curabitur ac consectetur mi. Proin ac posuere est. Duis tincidunt vehicula pellentesque. Suspendisse diam lorem, ultricies in malesuada at, gravida non lorem. Nunc nec ipsum purus. Nullam fringilla, odio non vestibulum facilisis, mi eros blandit nisl, tincidunt maximus metus erat eu magna. Donec quis nisl vitae purus pellentesque rutrum sed vel leo. Donec sed sagittis arcu. Nulla et nunc luctus, laoreet elit vel, porttitor lacus.
  • Question goes here?
    Answer goes here lorem ipsum dolor sit amet, consectetur adipiscing elit. Aenean finibus commodo nulla. Ut ut accumsan diam, dignissim ultrices turpis. Sed quis bibendum tortor. Ut eu pulvinar augue. Vestibulum at ante risus. Nunc rutrum ante lorem, in fringilla velit porttitor quis. Etiam vulputate mi vel lectus egestas, vel varius purus tempor. Donec neque massa, vestibulum id leo ut, suscipit hendrerit felis. Maecenas sollicitudin libero eu dui bibendum molestie. Etiam sit amet interdum nunc. Curabitur ac consectetur mi. Proin ac posuere est. Duis tincidunt vehicula pellentesque. Suspendisse diam lorem, ultricies in malesuada at, gravida non lorem. Nunc nec ipsum purus. Nullam fringilla, odio non vestibulum facilisis, mi eros blandit nisl, tincidunt maximus metus erat eu magna. Donec quis nisl vitae purus pellentesque rutrum sed vel leo. Donec sed sagittis arcu. Nulla et nunc luctus, laoreet elit vel, porttitor lacus.
  • Question goes here?
    Answer goes here lorem ipsum dolor sit amet, consectetur adipiscing elit. Aenean finibus commodo nulla. Ut ut accumsan diam, dignissim ultrices turpis. Sed quis bibendum tortor. Ut eu pulvinar augue. Vestibulum at ante risus. Nunc rutrum ante lorem, in fringilla velit porttitor quis. Etiam vulputate mi vel lectus egestas, vel varius purus tempor. Donec neque massa, vestibulum id leo ut, suscipit hendrerit felis. Maecenas sollicitudin libero eu dui bibendum molestie. Etiam sit amet interdum nunc. Curabitur ac consectetur mi. Proin ac posuere est. Duis tincidunt vehicula pellentesque. Suspendisse diam lorem, ultricies in malesuada at, gravida non lorem. Nunc nec ipsum purus. Nullam fringilla, odio non vestibulum facilisis, mi eros blandit nisl, tincidunt maximus metus erat eu magna. Donec quis nisl vitae purus pellentesque rutrum sed vel leo. Donec sed sagittis arcu. Nulla et nunc luctus, laoreet elit vel, porttitor lacus.
  • Question goes here?
    Answer goes here lorem ipsum dolor sit amet, consectetur adipiscing elit. Aenean finibus commodo nulla. Ut ut accumsan diam, dignissim ultrices turpis. Sed quis bibendum tortor. Ut eu pulvinar augue. Vestibulum at ante risus. Nunc rutrum ante lorem, in fringilla velit porttitor quis. Etiam vulputate mi vel lectus egestas, vel varius purus tempor. Donec neque massa, vestibulum id leo ut, suscipit hendrerit felis. Maecenas sollicitudin libero eu dui bibendum molestie. Etiam sit amet interdum nunc. Curabitur ac consectetur mi. Proin ac posuere est. Duis tincidunt vehicula pellentesque. Suspendisse diam lorem, ultricies in malesuada at, gravida non lorem. Nunc nec ipsum purus. Nullam fringilla, odio non vestibulum facilisis, mi eros blandit nisl, tincidunt maximus metus erat eu magna. Donec quis nisl vitae purus pellentesque rutrum sed vel leo. Donec sed sagittis arcu. Nulla et nunc luctus, laoreet elit vel, porttitor lacus.
  • RCsolver Features and Capabilities
    - ACI-318, Eurocode 2, Eurocode 8 Specifications. - EC2 national annexes of more than 10 countries. - Superior interactive interface. - Design and evaluate concrete members in minutes. - Powerful options. - Time-saving design approach. - Design and Assessment modes. - Great for engineers, consultants, and contractors. - Quick evaluation of many alternatives. - Full presentation of all main and partial calculations. - Extensive verification and training examples. - Extensive theory manuals. - Great tool for the teaching and learning of concrete design. - Great tool for the quick estimation of existing reinforcement. - Detailed summary reports in word and pdf.
  • Gráficos personalizables
    Con SiteMaster, puedes generar informes temporales personalizables en cualquier profundidad del inclinómetro.
  • Tabla resumen
    SiteMaster compila una tabla resumen para todos los inclinómetros, que presenta el estado actual del proyecto.
  • Mapa del sitio
    Agregue el mapa del sitio directamente desde Google Maps, localice inclinómetros en un mapa y vea los contornos de desplazamiento.
  • Límites de advertencia
    SiteMaster te permite predefinir límites de advertencia de desplazamiento y velocidad. Cuando se excede un límite de advertencia, SiteMaster te advierte con el color de límite apropiado.
  • Escáner de lógica de suma de comprobación:
    SiteMaster examina las lecturas de sumas de comprobación, señalando posibles inconsistencias con colores fáciles de distinguir.
  • Opciones de corrección
    Las correcciones se pueden aplicar a un inclinómetro o a una lectura individual. Las opciones de corrección disponibles incluyen: a) Correcciones espirales b) Correcciones de base transpuesta c) Transposición de puntos a lo largo de la profundidad d) Correcciones rotacionales e) Correcciones de desplazamiento de sesgo f) Ajuste de la constante de la sonda para una lectura individual g) Desplazamientos vectoriales con profundidad
  • Sistema de datos inteligente
    SiteMaster cuenta con un sistema de gestión de datos inteligente y flexible. Los datos críticos se almacenan en archivos XML, y los datos se pueden ajustar fácilmente utilizando el explorador de Windows.
  • Plano clave
    ¿Dónde está ese inclinómetro? Utiliza nuestro plano clave para localizar ese inclinómetro con precisión
  • Plano del sitio
    Puede ingresar una vista del plano del sitio en formato JPEG, personalizar la escala y trazar el progreso del desplazamiento máximo en el plano para todos los inclinómetro
  • Características de Trench 2019
    Estabilidad tridimensional según la norma alemana DIN 4126. Estabilidad bidimensional con cuñas o presiones activas. Cargas en 2D y 3D, incluyendo edificios, etc. Variar densidades de lodos, dimensiones de paneles, etc. Definiciones alternativas de factores de seguridad. Uso de patrones de sobrecarga uniformes o personalizados. Factor de seguridad proporcionado a lo largo de la profundidad de la trinchera. Múltiples combinaciones de análisis con diferentes capas o propiedades. Realizar estudios paramétricos sin cambiar los datos predeterminados. Interfaz de usuario amigable y salidas completas de pantalla e impresora. Unidades métricas e inglesas disponibles.
  • STEELBEAM
    - AISC ASD 9th codes - AISC LRFD 13th - AISC, European, and British steel sections - Check H Beams and Pipe Sections - Section Optimization options - Check multiple sections at once - Full report generation with all equations - Generate reports in Word and Pdf
  • I try to open the program but the main window does not appear in my screen.
    There are a couple of reasons why this might happen: - Your Windows drivers need to be updated. You can run the following file, which is supplementary driver: Update Windows CBIOS Usually this driver upgrade resolves the issue and the software can be accessed normally. The same driver upgrade can assist the Windows in your device to recognise the USB key. In case it's not recognized immediately, or there is an exclamation mark in the device manager of the Operating System for the "Crypto-Box 2 USB" device please let us know, so that we can offer further assistance. - Another instance of the software is still open, or the software was not closed properly. You cannot run 2 instances of the same program. Please take a look at your task bar in case the program is already open. If not, you can take a look at the device's Task Manager. If the program appears open in the background, you can try to force stop it from the Task Manager and try to open it again. - You had an external monitor with higher resolution previously connected. Hover mouse over the taskbar button, wait for the preview small window to appear, right click, select to move the window. Bring it in view either with arrow keys or with the mouse. Arrow keys tend to work better. (try left and up)
  • I can access only the LEM analysis method - the other methods seem unavailable.
    If you see in the Analysis Methods only the LEM option as available, it means that probably during the first use of the program you selected the option to lock all other methods. To reverse that, you can do the following: 1. Open the Documents folder in your pc and locate a subfolder named DeepEXTemporaryFiles 2. Locate and delete a file named AnalysisStartMethod 3. Open the software. A window will pop up, asking you to select which method will be selected each time you open the program (i would recommend to keep selected the option for LEM, as it is the method that you should run first in most cases, but this is up to you). At this point, please make sure that the option far down in this window is NOT SELECTED - this is the option that locks all other methods and allows the use of LEM only.
  • Is DeepEX a Finite Element analysis software?
    DeepEX introduces a new additional module, the Finite Element Analysis. The new module enables users to analyze conditions, that consider full soil-structure-interaction. Elasticty models include Linear elastoplastic, and hyberbolic soil models. With the finite element analysis module activated, the software capabilities are greatly expanded and the software can take into consideration neightbouring structures and foundation piles, analyze SEM and TBM tunnels and much more. With FEM, DeepEX provides practically all methods of analysis for deep excavation design. The basic version does not include Finite Elements, though, our Non-linear analysis engine produces close-to-the-reality wall deflections and wall moments. External comparisons prove that the results using DeepEX are very close to the one produced by other Finite Element analysis programs.
  • Which analysis method should I use?
    The selection of the analysis method is a responsibility of the end user. All methods have certain advantages and limitations, so it is usually highly recommended that we perform all types of analysis and consider the most critical results. Conventional Limit Equilibrium Analysis Method is usually required. Non-linear Analysis Method results are usually more realistic, especially in multi-level excavation projects, since the construction staging is taken into consideration. Finite Element Method is considered to produce very accurate results. It can analyze conditions that consider full soil-structure interaction.
  • What analysis methods do you include in DeepEX software?
    DeepEX Software implements all common methods for the design and analysis of deep excavations systems. In the basic version (software core), the program includes the conventional Limit Equilibrium Method, as well as the Non-linear Analysis method (with use of elastoplastic Winkler springs). Finally, a combined method (LEM+NL) is availabe. With the Finite Element Analysis additional, optional module, the user can include in the software the advanced FEM engine of the software (DeepFEM) and analyze wall systems with the Finite Element Analysis method, considering full soil-structure interaction. Conventional Limit Equilibrium Analysis Method (LEM). Limit equilibrium is an analysis method, where limit state conditions are assumed. For excavations and earth retaining structures this usually means that earth pressures are assumed on both the retained and excavated sides. These pressures may represent a failure state such as active or passive lateral earth pressures, or an assumed redistribution such as diagrams by Peck or FHWA. In Limit Equilibrium Analysis, the retaining wall is analyzed to provide moment and force equilibrium, when possible. Support reactions are also calculated, typically by using the tributary area method. Non-Linear (Beam on elastoplastic foundations) Method (NL). DeepEX implements a non-linear finite element code for the analysis of the mechanical behavior of flexible earth retaining structures during all the intermediate steps of an open excavation. The non-linear engine is empowered by many unique advanced features. DeepEX offers the following elastoplastic soil models: a) Linear elastic - perfectly plastic b) Hyperbolic soil model c) Subgrade reaction soil model d) Small Strain Hardening model On the reloading part, every soil model has a linear reloading elasticity parameter. Such a parameter should typically range from 2 to 4 times the loading elasticity value (with average 3). In excavations, the reloading elasticity parameter typically describes the remaining soil below the excavation while the loading elasticity is mostly applicable for soil on the retained side. In a non-linear analysis the excavatio n models reduced to a plane problem, in which a unit wide slice of the wall is analyzed, as outlined in the Figure below. Therefore, DeepEX is not suitable to model excavation geometries in which three-dimensional effects may play an important role. In the modelling of the soil-wall interaction, the very simple yet popular Winkler approach is adopted. The retaining wall is modelled by means of beam elements with transversal bending stiffness EI; the soil is modelled by means of a double array of independent elastoplastic springs; at each wall grid point, two opposite springs converge at most. Limit Equilibrium and Non-Linear Analysis Combination Method (LEM+NL). In this case, DeepEX will first use the LEM method in order to calculate the wall embedment safety factors, and then will run the analysis with the soil springs in order to calculate all other parameters (support reactions, soil pressures, wall moment and shear stresses, wall displacements etc.). In stepped excavations and deadman wall systems, a part of the passive pressures of the back wall is transferred to the front wall as an active impact load when the LEM or the LEM+NL methods are used. The magnitude of this additional load is affected by several parameters, like the depth of the back wall (thus the passive pressures), the distance between the two walls etc. Finite Element Analysis Method (FEM). FEM analysis can consider all construction stage effects and enables us to model full soil-structure interaction. Soil is modelled with a mesh of quadratic triangular finite elements. DeepEX does all the stiffness calculations and help s us to estimate FEM analysis parameters. In FEM, the soil model of each soil type can be defined easily. DeepEX has implemented several models like Mohr-Coulomb, Soil Hardening, Cam Clay and more. It considers drained and undrained clay behavior and it can perform water flow analysis. DeepFEM can be used within the DeepEX software interactive interface, to analyze composite models like braced excavations with struts and rakers. Anchored walls. Deadman wall systems and more. It can calculate all analysis results – soil and water pressures, wall moment shear and displacement diagrams, support reactions, structural and geotechnical ratios, surface settlements and more. The results can be presented in tables and graphically on the model area for each stage. Limit Equilibrium and Finite Element Combination Method (LEM+FEM). In this case, DeepEX will first use the LEM method in order to calculate the wall embedment safety factors, and then will run the analysis with the finite elements in order to calculate all other parameters (support reactions, soil pressures, wall moment and shear stresses, wall displacements etc.). In stepped excavations and deadman wall systems, a part of the passive pressures of the back wall is transferred to the front wall as an active impact load when the LEM or the LEM+NL methods are used. The magnitude of this additional load is affected by several parameters, like the depth of the back wall (thus the passive pressures), the distance between the two walls etc.
  • What water analysis methods do you include in DeepEX?
    The software offers the following options for modeling groundwater: Hydrostatic: Applicable for both conventional and elastoplastic analysis. In ELP, hydrostatic conditions are modeled by extending the “wall lining” effect to 100 times the wall length below the wall bottom. Figure: Water pressures – Simplified flow Simplified flow: Applicable for both conventional and elastoplastic analysis. This is a simplified 1D flow around the wall. In the NL analysis mode, the traditional NL water flow option is employed. Figure: Water pressures – Hydrostatic pressures Full Flow Net analysis: Applicable for both conventional and elastoplastic analysis. Water pressures are determined by performing a 2D finite difference flow analysis. In NONLINEAR, water pressures are then added by the UTAB command. The flownet analysis does not account for a drop in the phreatic line. Figure: Water pressures – Full flownet User pressures: Applicable for both conventional and NL analysis. Water pressures defined by the user are assumed. In the nonlinear analysis, water pressures are added by the UTAB command. Figure: User defined water pressures options in DeepEX
  • How am I sure that the results produced by DeepEX are accurate?
    We have checked thoroughly all aspects and methods included in DeepEX. We have performed extensive verification examples, matching deflections from real projects throughout the United States. We can provide on demand an extensive verification document, containing a big number of verification examples, comparing software results with manual calculations and calculated deflections with real-project measurements. You can open the software verification document in pdf here:
  • Why does the free length of my tiebacks readjusts when i analyze my model?
    If the anchors free length change each time you run the analysis,despite the user changes, probably you have selected the option to use "Auto Canadian" or "Auto Italian" tiebacks free length in your design. If so, no matter what you define, the software uses the selected method recommendation and readjusts the lengths: This option (the Auto Canadian) is the default when you generate a model with the Wizard and some users do not notice it to change it according to their preference: If you wish to use User-Defined lengths, simply access the Draw Supports drop down in the general tab of the software (as presented in the first image above), and change from your selection to the first option "User". This will keep your changes without adjusting when you run the analysis.
  • How to define custom load combinations in DeepEX?
    1. You need to press on the button "Mult." in the Analysis tab of the software (the load combinations dialog appears) and you can access there the "User-Defined Combinations" tab: 2. In the boxes there you can define the factors manually for each property (the names of the parameters are self-explanatory in most cases): 3. After closing this dialog, you can access the drop down next to the "Single" button in the Analysis tab of the program and assign the User Defined Approach:
  • I receive a warning that "normal pressures below the excavation" are required
    DeepEX software provides a number of warnings after the analysis. Some of these warnings are critical and have to do with check ratios that are not satisfied. These warnings (marked with red) need to be taken seriously under consideration by the user. The software gives some optimization recommendations that can be followed, or the user can edit the model manually. Some of the provided warnings (marked with orange) are usually general recommendations according to general practice, or things to pay attention. This message is one of these non critical recommendations, asking to check that the active pressures below the excavation level at not 0. This can be managed from the Drive pressures drop-down in the Analysis tab of DeepEX, if there is selected the option "Normal" and you see active pressures on the pressure diagrams below the excavation you are fine.
  • How can I change the default DeepEX parameters?
    In order to change the software default settings, the user account has to have admin rights in the device, since the default file is located in the pc program files. The procedure is to start the software as administrator, open the Settings dialog from the Help tab and press to set the current project as default. Please review the steps below: A. With the software closed, take the mouse over the software icon in your Desktop and RIGHT-CLICK on it. B. From the menu that appears, please select to run the software as administrator. C. Then, the Default settings dialog can be accessed in the Help tab of DeepEX, perform the changes and select to set current project as Default. This will change the default file that is loaded when the software normally opens.
  • Can i include all the construction stages in a DeepEX model?
    In DeepEX it is not only available, but also highly recommended to create all intermediate construction stages in an examined project model. The software calculates and presents results for each stage, which is important since the last stage is not always the most critical one. In Limit Equilibrium Method, each stage is independent, thus wall deflections (and likely wall bending moments) are not realistic for cases with multiple supports. In Non-linear and Finite Element analysis methods a strict staging is required so the methods can converge and produce realistic results. With these methods, the initial stage is geostatic without excavation. Wall deflections and wall moments depend on construction staging. Figure: Wall deflection diagram, wall moments and support reactions in different stages
  • Wall embedment Safety Factors in DeepEX
    For the wall embedment, DeepEX calculates the Rotational, Passive and Length FS, taking into consideration the driving and resisting moments and shear forces below the last support, and available length respectively: After the analysis, you can access the Wall embedment FS table results and review what is going on on each wall/ in each stage A general recommendation could be you to locate the most critical (lowest) of the 3 calculated factors in each stage (FSpas, FSrot and FSEmbed or length) and make sure that: 1. In Service Conditions, FSmin > 1.5 in the cantilever excavation stage, FSmin > 1.4 in all other stages with activated supports. 2. When you use Load factors (i.e. AASTHO settings Strength conditions or Eurocode 7 Combinations), FSmin > 1.2 in the cantilever excavation stage, FSmin > 1 in all other stages with activated supports.
  • How are the settlements calculated in DeepEX?
    In DeepEX we provide 3 analysis methods: A. The classical Limit Equilibrium Method (LEM) B. The Non-Linear analysis method with use of elastoplastic Winkler springs (NL) C. The Finite Element Analysis Method (FEM). The FEM engine is available as an additional optional module within the software. About Settlements in DeepEX: - The settlement analysis in LEM is semiempirical. It estimates first horizontal displacements and then goes to estimate Vertical. If corrections to the method by Clough are made (available in the software), then the method is equivalent to the one presented by Storer (see the attached file). - In NL the horizontal displacement is calculated directly from the wall displacement. We have expanded on the NL analysis to consider if the wall base is moving. Then, the displaced horizontal volume is transformed to a settlement volume. - In FEM the settlement contours are calculated automatically.
  • Wall Passive, Active and Water widths in DeepEX
    In DeepEX software, in the wall sections dialog, user can define the wall spacing, as well as, the widths to be used in the calculations of the active, passive and water pressures. The following options are available: - Width d is originally the H beam flange size (if you use H steel beams as soldier piles). These are supposed to be driven piles. If you wish to convert them to drilled piles, you change the width manually to actually specify the diameter of the hole were the steel beam will be installed and covered with concrete. If you do reinforced concrete piles, then directly the width d is the diameterth of the concrete pile. - S is the wall spacing. For diaphragms and sheet piles you can use the value "1 ft" or "1 m" to review the results on screen per ft (or per meter) of the wall. In general, all the result values reported on screen are divided with the wall spacing to be presented /ft (or /m). For secant pile walls you define the center to center distance for every other pile. For tangent and soldier piles you define the center to center distance of each pile. - The Passive, Water and Active widths are the widths used below the excavation for the calculation of passive, water and active pressures respectively. For continuous walls (like secant piles, tangent piles, diaphragms, sheet piles etc), normally you define the same value to all these parameters (Spacing = Water width = Passive width = Active width). For non-continuous wall sections like soldier pile walls, there is no lagging below the excavation. In this case it is recommended to take: For Passive Width: 2.5 to 3 times the pile width d (H beam flange width) (for driven steel piles) or 2.5 to 3 times the pile width d (diameter) (for circular drilled piles). This value is limited by the spacing, so if 2.5*Pile diameter > Spacing, you just use the spacing. For Water and Active width: These should be equal to the flange or pile diameter, depending on the pile type (as above). By pressing the "?" button in the wall sections dialog, all these options are presented and explained.
  • Can I design both permanent and temporary walls in DeepEX?
    DeepEX can design both the temporary and the internal permanent walls. The user can add the permanent walls to the model using the “Draw left/right wall element” tool (see question #16). This allows the user to actually draw an additional wall element that can be placed either along the main wall, or on the left or right side of the main wall. The additional wall elements can be used as main or slave walls. Figure: External permanent and internal permanent walls in a metro station project designed with DeepEX
  • How to adjust the impact load on deadman systems and stepped excavation walls?
    When you have a system of walls like a stepped excavation or a deadman system, then the LEM analysis takes into consideration the interaction between the 2 walls. Basically, depending on the distance of the 2 walls and the height of the back deadman wall, if the passive pressures of the back wall do not have enough space to be distributed into the soil, a portion of them will be added in the active pressures of the front wall as an additional impact load. In DeepEX, this additional load in calculated when you use the Limit Equilibrium method (LEM), or the combination method (LEM+NonLinear analysis), and the impact load is distributed on the wall, affecting directly the active pressures on the front wall. In reality, not all this pressure is transferred. A big portion of it will be actually held by the back wall, because of the back wall passive resistance. This reduction is not taken into consideration automatically in DeepEX. In the program, we have a factor for this case, called Impact Load Adjustment Factor. There is a semi-empirical method that suggests to run the analysis and review the passive wall embedment FS of the back wall, and use a value like 1/FSpassive (or more if you wish to be more conservative) as an impact load adjustment factor.
  • How to apply vertical adhesion for undrained clays in DeepEX?
    To apply vertical adhesion for clays you need to have the Limit Equilibrium Analysis method selected (the adhesion is used in general, just you need to switch to LEM to pass these settings for now). If you do so, then in the same drop down you can define the wall friction, you will see options to use vertical adhesion for clays on each wall side, you can click on the items you wish to apply: Then, you can double-click on the wall and access the "Advanced Features" tab of the dialog that appears, where you can define the vertical adhesion as a percentage of the undrained shear strength, Su:
  • How can i add a CPT log in your software?
    The user can create the file in excel and then export it as tab delimited. The file can be of .txt or .cor format. The files should follow a specific format - 1st row should be parameter names, second row should be the units, and then row by row (without the first column numbering), we need to include four specific columns as presented in the image below: After the cpt log import, the user needs to press on the "Process Data" button, so the rest of the properties are estimated:
  • How does DeepEX take into consideration the loads from adjacent buildings?
    In DeepEX we can inlcude any commom type of external loads, either on the soil suftwace (strip loads or point loads), or loads directly applied on the wall. A building can be added on the model area as an external 3D building load, or simulated as an external strip surcharge: 1. Adding a building load: From the General tab of DeepEX we can select to add a building load and next click on the ground, close to the point where we wish to apply the building load. In the dialog that appears, we can define the exact building position, building size as well as several building properties (number of superstructure/understructure floors, number of columns, beam and column loads etc.): 2. Adding a building as an external strip surcharge: From the General tab of DeepEX, select to add a surface strip surcharge to the model: Click on the model surface on 2 points, close where you wish to apply the building load: In the dialog that appears we can define the exact load possition, magnitude and type (permanent/temporary). In addition, if we wish to include the building foundation, we can unselect the option “Is Surface”. This way we can also edit the load elevation, defining the foundation level for the load application.
  • Can DeepEX consider a sealed excavation?
    In the Analysis tab of DeepEX, we can choose to create a sealed excavation (create a liner effect). Figure: Sealed excavation option in DeepEX Figure: Water pressure diagram when sealed excavation option is selected
  • What are the implemented methods for the earth coefficients Ka and Kp?
    In general, we recommend you to use either the Automatic method for the earth coefficients, or the User Mode, where you can select the method for the calculation of Ka Kp. Ideally, you can define the soil properties you wish (friction angle and wall friction) and see directly the calculated earth coefficients on the model area for each soil type. With a few tries, you can define realistic soil properties: Automatic Mode (Recommended): If you select the Automatic approach (which is recommended), the software uses the following methods (according to the defined model options - straight or inclined surfaces, use of wall friction or not, use of seismic pressures or not): A tool that can help you estimate the properties a bit faster can appear if you type in the Command line of the software (below the stages) the command KA ESTIMATE and press enter. In that dialog you can try sets of friction angles/wall frictions and see fast the calculated Ka properties with different methods (what interests you is the Kah = horizontal component). A similar tool appears for Kp if you use the command KP ESTIMATE and press enter. User Mode: In User mode, you can step in and select the method for each wall driving and resisting side independently. Manual Mode - NOT RECOMMENDED - Works ONLY with NL Analysis The Manual is used only for Non-Linear analysis and it is recommended ONLY for cases like very rough surfaces, where the wedge analysis fails to find suitable Ka/Kp values. There you could make totally horizontal surfaces, apply 0 wall friction etc, and let the software use the user-defined Ka Kp from the soils dialog. You can find more information in the following article/video: https://www.deepex.com/training/examples/advanced-video-examples/lateral-earth-coefficients-soil-pressures-deepex
  • Can I add an external surcharge in my DeepEX model?
    In DeepEX software, we can add a series of external surcharges on the model area, in order to simulate any potential traffic loads, construction loads, adjacent structures and more that can affect our excavation site. External loads can graphically be added in the model area, using the draw loads tools provided in the General tab of DeepEX. Adds a surface surcharge (define the start and end point of the surcharge). Adds a surface line load (click a surface point to add a point load). Adds a surcharge on the wall (define two wall points to add a surcharge). Adds a line load on the wall (define a wall point to add a wall point load) Adds a prescribed condition at a wall (click on the wall to add a prescribed condition). A prescribed condition is a predefined displacement or wall rotation (non-linear analysis) Adds a footing load (3D) (define a point where to install a footing load). Creates a new building (define a point where to install a building). Adds a 3D surface load (click on it and draw a 3D load in the Plan view screen). Click to manage the elastic load options (see paragraph 4.8). Edit load combinations. Load combinations are user defined combinations where a load can be selected manually if it is favorable or unfavorable. Assign a load combination. With this option, a load combination can be assigned to a specific design section.
  • How can i apply an axial load on a wall & calculate the axial capacity?
    A. Adding an Axial Load You can add a Linear Load on the wall and define the Pz component (vertical load magnitude): B. Calculating Axial Load Diagrams In the Design tab of the software, you need to select the option "Include axial load on wall" (else the axial load will not be examined). C. Defining Geotechnical Capacity Options: In the Stability+ tab of the software, you can select the option "Calculate Axial Geotechnical Capacity". In the same area, you can also set the Pile Calculation Settings, Select the pile installation method and Edit the method options: D. Including Soil/Wall Skin Friction (for concrete walls) When we are using any type of concrete walls (secant/tangent piles, diaphragm walls, drilled soldier piles (covered with concrete) etc) and we wish to calculate the axial pile capacity, we also need to access the Bond tab in the Soil Types dialog and set the ultimate bond resistance value. E. Reviewing the Axial load and Axial Capacity Results When we have selected to include axial loads on the wall and we have used a vertical load (or a load with a vertical component), we can see the Axial load diagram in the Results tab of the software. In the same diagram we can also see the calculated design and ultimate geotechnical capacities (if we selected so from the Stability+ menu - See C above).
  • Can I include more than one wall types or wall sections in the same model?
    In DeepEX, the user can create several wall sections that can be assigned independently to any wall on the model area (in the same or different examined 2D sections) or to additional wall elements. The list of wall sections is global in the specific project file, meaning that the same or any sections from the list can be used in different walls of different design sections. This allows the user to check fast different alrernatives for the project surrounding walls, use different walls in different project locations, create composite models, as well as design in the same model a temporary excavation and the internal permanent walls. Figure: Wall sections in DeepEX
  • Can I design a braced excavation using DeepEX?
    DeepEX can design excavations braced with steel struts and rakers. User can define multiple strut levels, as well as the strut and waler sections. The 3D Frame analysis module of DeepEX can be used to simulate the full shaft with all bracing for each support level. Figure: Braced excavation in DeepEX – Design Section A braced excavation can be created either by using the DeepEX Model Wizard, or manually in the model area with the tools included in the General tab of DeepEX. If you create the model manually(model is manually created), then you have to include the following stages(the following stages need to be included): 1. Initial Stage: Define wall section properties, soil properties and stratigraphy. No excavation should be performed in the initial stage. 2. Excavation Stage: Excavate between the two walls to an elevation below the desired strut installation level. (Repeat for each support level) 3. Support Installation Stage: Draw a strut support, connecting the two walls. You can define the exact strut elevation on the wall, the exact spacing between the strut and the strut section properties. (Repeat for each support level) 4. Final Excavation Stage: In this stage you should excavate to the desired final excavation elevation.
  • Can I design a top-down excavation using DeepEX?
    DeepEX can be used for the design and analysis of top-down excavation systems, braced with concrete slabs. Basement and intermediate floor slabs can be added as supports and they can be designed with DeepEX. Figure: Top-down excavation with concrete slabs in DeepEX A top-down excavation can be created either by using the DeepEX Model Wizard , or manually in the model area with the tools included in the General tab of DeepEX. If model is manually created, then the following stages need to be included: 1. Initial Stage: Define wall section properties, soil properties and stratigraphy. No excavation should be performed in the initial stage. 2. Excavation Stage: Excavate between the two walls to an elevation below the desired slab installation level. (Repeat for each support level) 3. Support Installation Stage: Draw a slab support, connecting the two walls. You can define the exact slab elevation on the wall and the slab section properties. (Repeat for each support level) 4. Final Excavation Stage: In this stage you should excavate to the desired final excavation elevation.
  • How can i design a gravity retaining wall with DeepEX?
    DeepEX software can design gravity retaining walls of any shape. This option is available with the additional Gravity Wall module. User has the flexibility to create basic types of retaining walls such as full gravity or with stem. Flexural, reinforcement can be included where ever desired. A gravity wall can also be used as a pier or an abutment wall with piles. The use of gravity wall in the model can be defined in the “Edit wall data” dialog of DeepEX (Figure 1). When the Gravity wall module is activated, there appears the option “Use gravity wall section”. The “Edit wall data” dialog appears when user double-clicks on the wall in the Model area of DeepEX. Figure 1: The Edit wall data dialog with “Use gravity wall section” option. Then the following option is selected, user should press on the button Edit Section Data. This will cause the “Retaining wall data” dialog to appear (Figure 2). Here, the user can define the retaining wall dimensions and reinforcement. Figure 2: Retaining Wall Data Dialog Depending on the selected wall type on the left side of this dialog, several dimension properties are available to be defined (Table 1). The reference coordinate for a gravity wall is taken as the left most corner of the stem (or top of wall). This coordinate is defined from the main wall data dialog. Height - Total wall height (excluding the key if used) Base - Total base wall width Top width- Top of the wall width Dist. To top left corner - Distance to top left corner from the far left side of the wall Heel thick - Base thickness on the driving side Toe width - Distance from the end of the main wall body to the end of the wall toe Toe thick - Base thickness on the resisting side The following retaining wall types are available in DeepEX: Calculate Driving Pressures from edge of wall: In the default mode, stability safety factors are calculated from soil and other pressures directly acting on the driving wall sides. While this assumption gives very good, approximate results, in theory the driving horizontal pressures can be taken at the wall edge. By selecting this option, safety factors are calculated by pressures acting directly on a vertical wall edge that is defined from the left most base coordinate if pressures are driving from left to right or the right most coordinate if pressures are driving from right to left. If this option is selected, then driving soil pressures on this vertical edge are always taken as Active or At-rest. The reinforcement data table enables the use of reinforcing bars on each wall face. Please note that DeepEX does not account for development lengths and reinforcement bending. It is the final responsibility of the engineer to decide how reinforcement has to be bent, cut, or shaped for fabrication. DeepEX though will calculate and report all bending and shear capacities.
  • Can the wall section change along the wall depth?
    We can change the wall section with depth with the "Additional Wall Elements" tool of the software. This allows the user to actually draw an additional wall element that can be placed either along the main wall, or on the left or right side of the main wall. The additional wall elements can be used as main or slave walls: A. Double click on the wall, edit the wall section and create all the wall sections that you need to use in your model. B. Define the position, top elevation and depth of the main left wall. C. Press on the arrow next to the option Edit 1st wall of the General tab of DeepEX and select to Draw left wall element (see figure below). D. Draw an additional wall element below the main wall (click on 2 points). In the dialog that appears, define the wall section and position of the additional wall.
  • Can I design a circular shaft using DeepEX?
    DeepEX can design circular shafts, either cantilever, or supported by ring beams and cap beams. Figure: Circular excavation with cap beam and ring concrete support in DeepEX A circular shaft model can be created with the DeepEX Model Wizard. As shown on the instructions below: Open DeepEX Wizard and select the required unit system. Figure: Define model unit system Select the analysis method, and the desired classical earth and water pressures method. Figure: DeepEX Wizard – Welcome tab Select the project type and define the basic project properties (final excavation depth, wall length, circular shaft radius, tip of the wall elevation and water table). Figure: DeepEX Wizard – Dimensions tab Define the project soil properties and stratigraphy. Figure: DeepEX Wizard – Soil Layers tab Define the wall section properties. Figure: DeepEX Wizard – Wall Type tab Define supports (cap beam, liner walls, ring beam supports). Figure: DeepEX Wizard – Supports tab Define depth for each support level. Figure: DeepEX Wizard – Stages tab Define surcharges. Figure: DeepEX Wizard – Surcharges tab Define structural and geotechnical codes. Figure: DeepEX Wizard – Codes tab
  • Can I design a bin-type wall using DeepEX?
    DeepEX can design bin-type walls. The two main walls can be connected with tierods and user can choose to excavate outside the walls. Figure: Bin type wall design in DeepEX A bin-type can be created either by using the DeepEX Model Wizard, or manually in the model area with the tools included in the General tab of DeepEX. If the model is created manually, then the following stages need to be included: 1. Initial Stage: Define wall section properties, soil properties and stratigraphy. No excavation should be performed in the initial stage. 2. Excavation Stage: Excavate outside the two walls to an elevation below the desired tierod installation level. (Repeat for each support level) 3. Support Installation Stage: Draw a tierod, connecting the two walls. You can define the exact tierod elevation on the wall and the tierod section properties. (Repeat for each support level) 4. Final Excavation Stage: In this stage you should excavate to the desired final excavation elevation.
  • Can I design a cantilever excavation using DeepEX?
    DeepEX can design cantilever excavations. In Limit Equilibrium Analysis, user can select to use either the Free or the Fixed Earth Method for the cantilever calculations. Figure: Cantilever excavation in DeepEX
  • Can I design a dead-man wall using DeepEX?
    DeepEX can design dead-man wall systems. The software takes into consideration the earth and water pressures, the external loads, as well as the interaction between the two walls. Figure: Dead-man wall design in DeepEX A dead-man wall can be created either by using the DeepEX Model Wizard, or manually in the model area with the tools included in the General tab of DeepEX. When the model is manually created, then the following stages need to be included: 1. Initial Stage: Define wall section properties, soil properties and stratigraphy. No excavation should be performed in the initial stage. 2. Support Installation Stage: In this stage you should draw a ground anchor support (tierod), connecting the two walls. You can define the exact tierod elevation on the wall, the exact spacing between the tierods and the tieback section properties. 3. Backfill Stage: Backfill between the two walls up to the top of the wall elevation. 4. Final Excavation Stage: Excavate to the desired final excavation elevation.
  • Which wall types can I design using DeepEX?
    DeepEX software can design any common wall type in minutes. The user can select the preferred wall type and define fast the wall section properties (dimensions, reinforcement, materials). The following wall types are available: Soldier pile and lagging walls (supported by reinforced concrete piles, prestressed concrete piles, concrete piles with GFRP, H steel beams, steel pipes, steel channels, rectangular hollow steel sections, timber piles and more) Secant and Tangent pile walls (with steel reinforcement or steel sections) Sheet pile walls - Steel Sheets and Timber Sheet Piles Diaphragms (Slurry) walls - Reinforced Concrete Walls Soldier pile and tremied concrete walls (SPTC) Combined sheet pile walls (I beams or pipes combined with sheet piles) Box sheet pile walls Custom walls, that can be used to simulate any other wall type. Figure: Wall types in DeepEX
  • Can DeepEX perform lagging calculations for soldier pile walls?
    The lagging is not included in the wall analysis - it is used to transfer the loads on each pile and then the software does the full design of the piles. DeepEX estimates the lagging loads and does some basic lagging checks. Typically the lagging is a simply supported beam, but the load can be modified within the program. The default is uniform, but is can be reduced or converted from uniform to other: After the analysis, in the Analysis and Checking summary table that appears, you can select to display the "One Design Section" from the list on the left, select your design section and select to review the Lagging Estimation: The end user needs to select to include in the report the related available report section, so these checks are reported:
  • Pressure widths in the wall sections dialog
    Wall Section Parameters for each wall case: A. Horizontal Spacing S This is the distance taken into consideration in the calculations. It is important, because it is used to divide the calculated moments, shears etc, presenting the results per foot (or per meter) of the wall. A.1. Continuous walls (concrete diaphragms - slurry walls , sheet piles): It is recommended to use as spacing 1ft (or 1m). A.2. Continuous walls (secant piles): The spacing is the center-to-center distance between the reinforced piles. A.3. Continuous walls (tangent piles): The spacing is the center-to-center distance between every pile. A.4. Non-Continuous walls (soldier piles - combined sheet piles): The spacing is the center-to-center distance between every pile. B. Width D This parameter is the actual wall width (thickness). B.1. Continuous walls (concrete diaphragms - slurry walls): The width is the concrete section thickness (defined by the end user). B.2. Continuous walls (Sheet piles): The width is the equivalent wall thickness (defined automatically by the selected steel-section, only graphical). B.3. Secant - Tangent piles - Soldier pile wall supported by reinforced concrete piles: The width is the diameter of each pile (defined by the end user). B.4. Soldier pile wall supported by steel sections - Combined sheet pile walls: By default, the steel sections are considered driven, and the Width value is defined as the maximum section dimension of the selected steel beam section (Flange - Web), or the steel pipe diameter. If we will to use steel sections in drilled holes below the excavation with concrete cover, then we can manually change the width D, to define the hole diameter. C. Active and Water width This is the width for the calculation of the active and water pressures below the excavation where there is no lagging (for soldier pile walls). C.1. Continuous walls (diaphragms, sheet piles, secant/tangent piles): It is recommended to use the wall Spacing (as defined above). C.2. Non-Continuous walls (soldier piles, combined sheet piles): It is recommended to use the Width value (as defined above). D. Passive width This is the width for the calculation of the passive pressures below the excavation where there is no lagging (for soldier pile walls). D.1. Continuous walls (diaphragms, sheet piles, secant/tangent piles): It is recommended to use the wall Spacing (as defined above). D.2. Non-Continuous walls (soldier piles, combined sheet piles): It is recommended to use 2.5 to 3 times the Width value (as defined above). This value (2.5 or 3*D) is limited by the defined Spacing, so if 2.5*D > Spacing, use the Spacing. Combined Sheet Pile Walls The combined sheet pile walls (king piles) are a combination of steel sections (H piles or pipes), with sheet piles that are used as lagging. Default - Continuous Wall In DeepEX, the sheet piles extend up to the pile tip elevation by default, so the wall is considered to be a continuous wall along the full wall depth. The pile tip elevation (bottom of the wall) is calculated automatically, since we defile the wall top elevation and the total wall depth. In that case, we need to specify the wall spacing and thickness as defined above in A.4 and B.4, and then we have to use the Spacing value to all active, passive and water widths). Non-Continuous Wall If we wish to stop the sheet pile sections to a specific elevation, higher than the pile tip elevation, we have to make the following changes: 1. For the active, water and passive widths below the excavation, we have to use the pile width as defined in C.2 and D.2 above. 2. The Custom Elev. Value in the Edit Wall dialog (appears when we double-click on a wall), is the elevation until which the sheet piles are extended. Below this elevation, the active, passive and water widths will be used as defined in (1) right above.
  • Can DeepEX optimize the wall length?
    The software provides two options for the wall embedment optimization in Limit Equilibrium Analysis: A. Define the wall depth manually and check the calculated wall embedment safety factors. After the analysis is performed, the Analysis summary table appears. There wecan review the most critical results among all stages. We have to make sure that all 3 wall embedment factors (length, passive, rotational) are above a limit (typically this could be 1 , 1.2, 1.3, 1.5 depending how you design). After we close this summary table, we can still open the Wall Embedment FS results in the results tab of DeepEX for each stage: B. Automatic wall embedment software optimization use: When using the Limit Equilibrium Method (LEM), the wall length can be optimized based on the wall embedment safety factors. This option can be located at the Design Tab of DeepEX and it is available only when LEM analysis is selected. There, the required safety factor can be defined for the cantilever stage and for the supported excavation stages. The software will change the wall length to achieve the wanted wall embedment FS.
  • Can DeepEX optimize the wall section?
    DeepEX offers optimization tools that can help the user to optimize the wall and support sections. Though, the user should select the original wall type and run the analysis. The software keeps the wall type and proposes wall sections that offer enough structural capacity. The user can select the ideal section from lists of suitable sections presented by the software. Figure: Optimization tools of DeepEX Figure: Option to optimize the wall section in DeepEX Figure: Proposed steel beam sections from wall section optimization
  • Which structural codes do you include in DeepFND and HelixPile?
    The following interational structural design codes are implemented in our software and allow the design of any pile structural section (Steel, Concrete, Timber Sections): ACI 318-11 and 318-19 (Reinforced Concrere Members) ASD 1989 (Allowable Stress Design - Steel Members) AASHTO LRFD 13th Edition (Steel Members) AISC 360 and 360-Allowable (2010 and 2016) Australian Standards (AS 3600, AS/NZS 4100) EUROCODE 2, 3 and 8 Specifications - Several national annexes are implemented
  • What is the difference between DeepFND and HelixPile?
    DeepFND and HelixPile are two similar, powerful software programs for the design and evaluation pile foundations. The programs can perform structural and geotechnical, lateral, and axial analysis of any foundation pile (single piles, pile groups and pile rafts). The only difference between the two programs is the available pile types. DeepFND can design all pile sections and pile types (helical and non-helical – drilled, driven, caissons, micropiles, CFA piles and more), whereas HelixPile can design only helical piles.
  • Which Geotechnical Codes - Load Combinations can i include in my model?
    DeepFND and HelixPile software programs implement the load combinations according to the following geotechnical codes: AASHTO LRFD 6, 8, 9, AASHTO 17, AASHTO GFRP-2 CALRANS LRFD PEN DOT AASHTO European Codes (DIN, BS, XP94, DM, DA) Chinese Standards (CN) Eurocode 7 Load Combinations
  • Does your program check the structural capacities of the piles as well?
    DeepFND and HelixPile software have implemented several structural codes used worldwide. The software do all calculations according to the selected standard and calculate the pile moment and shear capacities. All structural design checks and equations can be included in the software reports. Figure: Pile Moment, Shear and Displacement Diagrams - DeepFND
  • What type of Pile Analysis can your software do?
    Our foundation piles design software DeepFND and HelixPile can perform axial and lateral analysis of any pile type. The programs can calculate the pile shaft resistance and the bearing capacity of the piles, taking into consideration the pile installation method. In addition, the software can do lateral pile analysis, calculating the pile displacements, moment and shear diagrams for any applied load combination on the pile head.
  • What happens if my local country's codes are not implemented in your software?
    Our development team we can implement specific codes upon request. All we need from the client is a copy of the code recommendations in pdf format. Typically, the code implementation can be finished within some working days.
  • What pile types can i design with your software programs?
    DeepFND software can be used for the design of any foundation pile and support system. DeepFND implements all approved scientific methods for the design of deep foundation piles. With DeepFND we can design drilled piles, driven piles, CFA piles,caissons, drilled-in-displacement piles, micropiles and helical piles. Drilled Piles Driven Piles Drilled-In-Displacement Piles CFA Piles Micropiles Caissons Helical Piles On the other hand, both our foundation pile design software programs - DeepFND and HelixPile - can design helical piles (steel pipes, square solid and square hollow sections with helical plate configurations). Figure: Non-Helical Pile Types (DeepFND) Figure: Helical Pile Types (DeepFND and HelixPile)
  • Can your software design pile caps with a group of piles?
    Our foundation pile design software can design single foundation piles, pile groups and pile rafts. The following pile cap shapes are available: Rectangular Pile Caps Triangular Pile Caps Circular Pile Caps Hexagonal Pile Caps Octagonal Pile Caps User-Defined Perimeter Pile Caps Pile Rafts The user can create a concrete cap of any shape and define the pile configuration (pile locations and structural sections). The program can calculate the load that is transfered on each pile, considering the pile location and analyze all piles. Figure: A Rectangular Cap with Concrete Piles - DeepFND Figure: A Circular Cap with Helical Piles - DeepFND and HelixPile
  • How can I change the default Software parameters?
    In order to change the software default settings, the user account has to have admin rights in the device, since the default file is located in the pc program files. The procedure is to start the software as administrator, open the Settings dialog from the Help tab and press to set the current project as default. Please review the steps below: A. With the software closed, take the mouse over the software icon in your Desktop and RIGHT-CLICK on it. B. From the menu that appears, please select to run the software as administrator. C. Then, the Default settings dialog can be accessed in the Help tab of the software, perform the changes and select to set current project as Default. This will change the default file that is loaded when the software normally opens.
  • How can I change the default Software parameters?
    In order to change the software default settings, the user account has to have admin rights in the device, since the default file is located in the pc program files. The procedure is to start the software as administrator, open the Settings dialog from the Help tab and press to set the current project as default. Please review the steps below: A. With the software closed, take the mouse over the software icon in your Desktop and RIGHT-CLICK on it. B. From the menu that appears, please select to run the software as administrator. C. Then, the Default settings dialog can be accessed in the Help tab of the software, perform the changes and select to set current project as Default. This will change the default file that is loaded when the software normally opens.
  • Which Geotechnical Codes - Load Combinations can i include in my model?
    DeepFND and HelixPile software programs implement the load combinations according to the following geotechnical codes: AASHTO LRFD 6, 8, 9, AASHTO 17, AASHTO GFRP-2 CALRANS LRFD PEN DOT AASHTO European Codes (DIN, BS, XP94, DM, DA) Chinese Standards (CN) Eurocode 7 Load Combinations
  • What pile types can i design with your software programs?
    DeepFND software can be used for the design of any foundation pile and support system. DeepFND implements all approved scientific methods for the design of deep foundation piles. With DeepFND we can design drilled piles, driven piles, CFA piles,caissons, drilled-in-displacement piles, micropiles and helical piles. Drilled Piles Driven Piles Drilled-In-Displacement Piles CFA Piles Micropiles Caissons Helical Piles On the other hand, both our foundation pile design software programs - DeepFND and HelixPile - can design helical piles (steel pipes, square solid and square hollow sections with helical plate configurations). Figure: Non-Helical Pile Types (DeepFND) Figure: Helical Pile Types (DeepFND and HelixPile)
  • Which structural codes do you include in DeepFND and HelixPile?
    The following interational structural design codes are implemented in our software and allow the design of any pile structural section (Steel, Concrete, Timber Sections): ACI 318-11 and 318-19 (Reinforced Concrere Members) ASD 1989 (Allowable Stress Design - Steel Members) AASHTO LRFD 13th Edition (Steel Members) AISC 360 and 360-Allowable (2010 and 2016) Australian Standards (AS 3600, AS/NZS 4100) EUROCODE 2, 3 and 8 Specifications - Several national annexes are implemented
  • What happens if my local country's codes are not implemented in your software?
    Our development team we can implement specific codes upon request. All we need from the client is a copy of the code recommendations in pdf format. Typically, the code implementation can be finished within some working days.

4

Deep FND

MAIN Deep FND QUESTIONS

  • INTERFAZ INTERACTIVA SUPERIOR
    SnailPlus es un software extremadamente amigable, que ofrece una interfaz de modelo interactiva. En el área del modelo podemos crear todas las etapas y definir todos los parámetros del proyecto (cargas externas, secciones de clavos de suelo, secciones de hormigón proyectado, etc.) gráficamente. Todos los elementos en el área del modelo (sondeo, clavos de suelo, revestimiento) pueden ser accedidos y sus propiedades pueden ser definidas a través de diálogos amigables para el usuario.
  • EXPORTAR INFORMES EN PDF Y MS WORD
    Los informes de SnailPlus pueden incluir tablas y gráficos con todas las propiedades del modelo examinadas y los resultados calculados. También podemos optar por incluir en el informe todas las ecuaciones de diseño estructural y el procedimiento de cálculo. Los informes de SnailPlus se pueden previsualizar, exportar en formato PDF o exportar en formato Word, para que puedan ser editados posteriormente por el usuario. Seleccionar Secciones de Diseño para el Informe Seleccionar Etapas de Construcción para el Informe Personalizar los Gráficos del Informe Definir la Distribución del Informe Definir las Secciones del Informe Posibilidad de Incluir Ecuaciones y Cálculos de Etapa en el Informe Previsualizar el Informe Exportar Informes en Formatos PDF y Word
  • PROPIEDADES DEL SUELO - REGISTROS SPT - REGISTROS CPT
    Los tipos de suelo, las propiedades del suelo y las estratigrafías pueden definirse fácilmente en SnailPlus mediante diálogos amigables para el usuario. En SnailPlus podemos crear una lista ilimitada de suelos y definir todas las propiedades del suelo rápidamente. El software proporciona varias herramientas de estimación (Estimador SPT y herramientas de estimación parcial para cada propiedad utilizando métodos y ecuaciones científicas). En SnailPlus podemos agregar directamente Registros SPT y Registros CPT, que pueden ser utilizados desde el software para estimar diversas propiedades del suelo. Definir lista de tipos de suelo Definir lista de estratigrafías (sondeos) Herramientas de estimación de propiedades del suelo Registros SPT Registros CPT
  • Modelo Wizard -Cree un modelo en segundos
    Modelo Wizard de SnailPlus se puede utilizar para crear cualquier superficie inclinada con todas las etapas de construcción, excavaciones e instalación de clavos de suelo y revestimientos en minutos. Podemos usar las pestañas del asistente para definir todos los parámetros del proyecto (parámetros de la superficie inclinada, clavos de suelo - placas de cabeza y secciones estructurales de hormigón proyectado, opciones de etapa y estándares de diseño). El Asistente crea el modelo automáticamente, ahorrándonos mucho tiempo y esfuerzo para la creación inicial.
  • CÓDIGOS DE DISEÑO ESTRUCTURAL Y GEOTÉCNICO
    HelixPile ha implementado muchos códigos y estándares internacionales de diseño para el diseño y análisis (estructural y geotécnico) de los pilotes helicoidales. En HelixPile podemos realizar un diseño de servicio o con factores utilizando normas de EE.UU. y Europa. Podemos seleccionar y cambiar fácilmente entre varios códigos estructurales de EE.UU., Europa, Australia y China. ACI 318-11 (Miembros de Hormigón Armado) ASD 1989 (Diseño por Esfuerzos Admisibles - Miembros de Acero) AASHTO LRFD 13ª Edición (Miembros de Acero) AISC 360 y 360-Admisible (2010 y 2016) Especificaciones EUROCODE 2, 7 y 8 Combinaciones de Cargas de AASHTO LRFD Códigos Europeos (DIN, BS, XP94, DM, DA) Normas Australianas (AS 3600, AS/NZS 4100) Normas Chinas (CN)
  • GRUPOS DE PILOTES - LOSAS SOBRE PILOTES
    HelixPile puede diseñar tanto Pilotes Helicoidales Individuales como Grupos de Pilotes con múltiples pilotes (se requiere el módulo opcional adicional Grupos de Pilotes). El software también puede diseñar Balsas de Pilotes, considerando el efecto combinado del suelo bajo la balsa (módulo adicional a nuestra opción de Grupo de Pilotes). Pilotes Helicoidales Individuales Tapas de Pilotes Rectangulares Tapas de Pilotes Triangulares Tapas de Pilotes Circulares Tapas de Pilotes Hexagonales Tapas de Pilotes Octagonales Tapas de Pilotes con Perímetro Definido por el Usuario Balsas de Pilotes
  • TIPOS DE PILOTES Y CONFIGURACIONES DE HÉLICE
    HelixPile puede realizar un diseño completo tanto vertical como lateral de pilotes helicoidales. Los pilotes helicoidales en HelixPile pueden ser de cualquier forma típica (tubos, secciones cuadradas sólidas y secciones cuadradas huecas). En cada pilote podemos definir y asignar un número ilimitado de configuraciones de hélice. Los pilotes pueden ser inyectados. Finalmente, podemos usar una carcasa externa en la cabeza del pilote, aumentando la capacidad lateral del pilote. Tubos de acero Secciones cuadradas sólidas de acero Secciones cuadradas huecas de acero Configuraciones de hélice ilimitadas por pilote Pilotes inyectados Uso de carcasa de acero externa
  • ANÁLISIS AXIAL Y LATERAL DE PILOTES
    HelixPile puede realizar análisis tanto verticales como laterales de pilotes. HelixPile utiliza tanto los métodos de la placa individual como del cilindro, reportando los resultados más críticos. Se pueden seleccionar las ecuaciones generales y las de Helicap. Para el diseño de pilotes verticales, podemos optar por utilizar el método de Vesic o el de Meyerhoff-Hansen. HelixPile calcula y verifica el torque de instalación de los pilotes helicoidales. Para el análisis lateral de pilotes, HelixPile puede usar la carga definida en la cabeza del pilote y calcular los diagramas de momento desarrollado, cortante y desplazamiento del pilote, o puede realizar un análisis de empuje, calculando y presentando la carga lateral requerida para alcanzar un desplazamiento especificado de la cabeza del pilote. HelixPile puede realizar análisis de asentamiento. En el software podemos seleccionar uno de los criterios de aceptación de pilotes implementados, o definir nuestro propio criterio.
  • INTERFAZ INTERACTIVA SUPERIOR
    HelixPile es un software extremadamente fácil de usar, que ofrece una interfaz de modelo interactiva. En el área del modelo podemos crear diferentes etapas de carga y definir todos los parámetros del proyecto (cargas externas en la cabeza del pilote, propiedades de la sección del pilote, etc.) gráficamente. Todos los elementos en el área del modelo (perforación, pilote, cargas externas) pueden ser accedidos y sus propiedades pueden ser definidas a través de diálogos amigables.
  • INFORMES EXPORTADOS EN PDF Y WORD
    HelixPile puede generar extensos informes para todas las secciones de diseño examinadas (pilotes) y etapas de carga. Los informes en HelixPile son totalmente personalizables: el usuario final siempre puede seleccionar todas las secciones del informe incluidas en el informe final. Los informes de HelixPile pueden incluir tablas y gráficos con todas las propiedades del modelo examinado y los resultados calculados. También podemos optar por incluir en el informe todas las ecuaciones de diseño estructural y el procedimiento de cálculo. Los informes de HelixPile pueden ser previsualizados, exportados a formato PDF o Word, de modo que pueden ser editados posteriormente por el usuario. Seleccione secciones de diseño para informar Seleccione etapas de construcción para informar Personalice los gráficos del informe Defina el diseño del informe Defina las secciones del informe Posibilidad de informar ecuaciones y cálculos de etapas Vista previa del informe Exportar informes en formatos PDF y Word
  • GENERACIÓN Y OPTIMIZACIÓN AUTOMÁTICA DE MODELOS DE AUTOMÓVILES
    El Asistente de Modelo de HelixPile puede usarse para crear cualquier modelo de fundación profunda en minutos. Podemos usar las pestañas del asistente para definir todos los parámetros del proyecto (configuraciones de análisis, tipo de pilote y sección estructural, cargas externas y normas de diseño). El asistente crea automáticamente el modelo, ahorrándonos mucho tiempo y esfuerzo en la creación inicial. HelixPile cuenta con una herramienta de optimización automática de longitud. El software puede usar un paso definido para aumentar la profundidad del pilote hasta un límite de profundidad definido, calculando la capacidad de tensión y compresión axial en cada paso.
  • PROPIEDADES DEL SUELO - REGISTROS SPT - REGISTROS CPT
    Los tipos de suelos, propiedades de suelos y estratigrafías pueden ser fácilmente definidos en HelixPile a través de diálogos amigables. En HelixPile podemos crear una lista ilimitada de suelos y definir rápidamente todas las propiedades del suelo. El software proporciona varias herramientas de estimación (Estimador SPT y herramientas de estimación parcial para cada propiedad usando métodos y ecuaciones científicas). En HelixPile podemos añadir directamente Registros SPT y Registros CPT, que pueden ser utilizados por el software para estimar diversas propiedades del suelo. Definir lista de tipos de suelo Definir lista de estratigrafías (perforaciones) Herramientas de estimación de propiedades del suelo Registros SPT Registros CPT
  • TIPOS DE MURO MÚLTIPLES
    El software QuayWalls puede diseñar cualquier tipo de sección de muro de muelle de gravedad, calculando las presiones del suelo, agua, olas y sísmicas sobre el sistema de muro. QuayWalls se puede utilizar para el diseño y análisis de: Muros cantiléver Muros segmentados Muros de cajón de caja con zonas de relleno de suelo Muros en forma de T Muros definidos por el usuario
  • PRESIONES DE OLAS Y REBASE
    QuayWalls puede calcular las presiones de las olas utilizando varios métodos establecidos. Las alturas iniciales de las olas y las longitudes de onda se pueden estimar con recomendaciones implementadas, o definidas manualmente por el usuario a través de un diálogo amigable. Finalmente, QuayWalls puede estimar automáticamente las tasas de flujo de rebase, ya que puede realizar cálculos de volumen de rebase promedio utilizando las ecuaciones de PROVERBS. Goda SainFlou Manual de Ingeniería Costera 2011 Allsop PROVERBS
  • ANÁLISIS DE ESTABILIDAD DE TALUDES Y DISEÑO DE CLAVOS DE SUELO
    SnailPlus global stability of slope surfaces (simple or reinforced with soil nails). SnailPlus can calculate and report the most critical slope surface and the slope stability safety factor with the use of several scientific methods. Soil nails can be used in the slope surfaces. SnailPlus calculates the effects of the soil nails to the slope stability analysis. Método de Bishop Método Morgenstern-Price (Equilibrio Límite General) Método de Spencer Normas francesas Clouterre para el diseño de clavos de suelo
  • DISEÑO COMPLETO DEL REVESTIMIENTO DE SHOTCRETE
    SnailPlus puede diseñar el revestimiento de shotcrete. También se pueden definir y analizar revestimientos de dos etapas (temporales y permanentes) con el software. SnailPlus realiza verificaciones en las placas de cabeza de los clavos de suelo. Diseño del revestimiento de shotcrete Revestimiento de dos etapas disponible Verificaciones de placas de cabeza
  • CÓDIGOS DE DISEÑO Y ESPECIFICACIONES
    SnailPlus ha implementado diversos estándares y especificaciones para el diseño de clavos de suelo y revestimientos de shotcrete. En SnailPlus podemos seleccionar especificaciones de ACI y FHWA para el diseño estructural. En el software podemos utilizar métodos de Estado Límite de Servicio o Estado Límite Último. Método Directo ACI Métodos FHWA y FHWA LRFD LRFD WSDOT 2019 (GDM) Factores de seguridad ASD LRFD FHWA GEC-7 EUROCODE 7 - Enfoque ULS
  • OPCIONES DE BÚSQUEDA DE SUPERFICIES DE TALUD MÚLTIPLES
    SnailPlus puede localizar e informar sobre la superficie de talud más crítica utilizando diversos métodos de búsqueda de superficies de talud: Superficies de Talud Circulares Superficies Circulares con Cuñas Activas y/o Pasivas Método Automático de Búsqueda de Superficies Métodos de Búsqueda de Superficies Trilineales Superficies con falla tipo bloque Superficies de Talud Definidas por el Usuario
  • What is the difference between DeepFND and HelixPile?
    DeepFND and HelixPile are two similar, powerful software programs for the design and evaluation pile foundations. The programs can perform structural and geotechnical, lateral, and axial analysis of any foundation pile (single piles, pile groups and pile rafts).The only difference between the two programs is the available pile types. DeepFND can design all pile sections and pile types (helical and non-helical – drilled, driven, caissons, micropiles, CFA piles and more), whereas HelixPile can design only helical piles.
  • Does your program check the structural capacities of the piles as well?
    DeepFND and HelixPile software have implemented several structural codes used worldwide. The software do all calculations according to the selected standard and calculate the pile moment and shear capacities. All structural design checks and equations can be included in the software reports. Figure: Pile Moment, Shear and Displacement Diagrams - DeepFND
  • Can your software design pile caps with a group of piles?
    Our foundation pile design software can design single foundation piles, pile groups and pile rafts. The following pile cap shapes are available: Rectangular Pile Caps Triangular Pile Caps Circular Pile Caps Hexagonal Pile Caps Octagonal Pile Caps User-Defined Perimeter Pile Caps Pile Rafts The user can create a concrete cap of any shape and define the pile configuration (pile locations and structural sections). The program can calculate the load that is transfered on each pile, considering the pile location and analyze all piles. Figure: A Rectangular Cap with Concrete Piles - DeepFND Figure: A Circular Cap with Helical Piles - DeepFND and HelixPile
  • What type of Pile Analysis can your software do?
    Our foundation piles design software DeepFND and HelixPile can perform axial and lateral analysis of any pile type. The programs can calculate the pile shaft resistance and the bearing capacity of the piles, taking into consideration the pile installation method. In addition, the software can do lateral pile analysis, calculating the pile displacements, moment and shear diagrams for any applied load combination on the pile head.
  • How is the pile cap modelled, rigid or finite stiffness?
    The pile cap is modelled with quadrilateral shell finite elements. The user can post process stress resultants and displacement of the cap.
  • What type of loads can i add on a single pile?
    In DeepFND and HelixPile software, we can add axial loads, lateral loads and external moments on both directions on each single pile head. In addition, we can add a distrubuted lateral load along the pile (user-defined elevations and magnitude). The following list summarizes the loads that can be applied on each axis. - Axial Loads (Z Axis) In DeepFND and HelixPile we can add axial loads on the pile head. A positive axial load magnitude is a compression load (downwards) and a negative magnitude is a tension load (uplift). - Lateral Loads (X Axis) The X-Axis is along the screen. A positive magnitude is a left-to-right load, and a negative magnitude is a right-to-left load. - Lateral Loads (Y Axis) The Y-Axis is on the perpendicular direction of the screen. A positive magnitude is an inwards load, and a negative magnitude is an outwards load (from the screen to the user). - External Moments (X and Y Axis) The external moments on each direction can be defined for each stage. A positive moment magnitude is a counter-clockwise moment, a negative value is a closkwize moment.
  • Which structural section types can i use in DeepFND?
    DeepEX software can design any common pile type in minutes. The user can select the preferred pile type and define fast the wall section properties (dimensions, reinforcement, materials). The following pile types are available: Typical piles (drilled, driven, CFA, Caisons etc) can be of any typical shape (circular, square, hollow) reinforced concrete, structural steel or timber (wood). The pile can be normal or belled type. We can define composite pile sections and we can change the pile section along the pile depth. Helical piles in DeepFND can be of any typical shape (pipes, square solid and square hollow sections). In each pile we can define and assign and unlimited number of helix configurations. The piles can be grouted. Finally, we can use external casing on the pile head, increasing the pile lateral capacity. Helical piles (pipes, square solid or square hollow sections) Reinforced concrete piles (circular or square section) Prestressed Concrete & Sections with GFRP and CFRP Steel beams (H piles, pipes, channel sections) Belled type piles Timber piles (wood) Steel core piles Composite piles
  • Can i check a certain pile under different load combinations?
    In DeepFND and HelixPile software, the user can add construction stages in any foundation pile section model. The stages in our foundation pile design programs work as loading stages, we can access and define tha axial tension and compression loads, as well as, the lateral loads and external moments for different stages and the software will calculate the pile capacities for all load combinations. Figure: Pile Loading in different stages
  • How can i add a CPT log in your software?
    The user can create the file in excel and then export it as tab delimited. The file can be of .txt or .cor format. The files should follow a specific format - 1st row should be parameter names, second row should be the units, and then row by row (without the first column numbering), we need to include four specific columns as presented in the image below: After the cpt log import, the user needs to press on the "Process Data" button, so the rest of the properties are estimated:
  • Is it possible to view the Moment and shear and interaction diagrams used to calculate reinforcement?
    In DeepFND we can view the interaction diagrams for each concrete section. We can also view Moment and shear along the pile, with the capacity indicated with the red lines left and right of the M and Q diagrams. All diagrams, including the interaction diagrams can be included in the exported reports.
  • For a piled raft, how is the influence of the raft on the soil taken into account?
    When the raft option is enabled the soil beneath the cap is considered through a non-linear Winkler base (either elastoplastic or exponential plastic formulation based on user selection). Influence of the raft on the soil is taken into account through the automatic configuration of the free length of the internal piles based on the intersection between the pile influence regions. The soil enclosed within the free length region is considered to be moving along with the cap and piles , thus shear resistance contribution along the perimeter of the piles within the free length region is considered to be zero.
  • Can i create and save my own piles with helix configurations in DeepFND & HelixPile?
    DeepFND and HelixPile software programs can design any common helical pile shape (pipes, square solid and square hollow sections). We can easily select the section shape and define the section parameters (dimensions, material properties etc). On each created pile section, we can fast generate several helix configurations, by defining the number of helixes, the helix plate diameter and thickness, and the plate spacing. All the generated helix configurations can be saved on a partial database, unique for each generated pile. Later, we can simply access and assign one of the generated helix configurations to the pile. We can select to use an external casing on any helical pile, in order to increase the lateral pile capacity. We simply need to define the casing section and the length from the pile top, where the casing is placed. The generated helical pile sections can be saved in a folder in any local device, and they can be loaded in any software file. Finally, any pile in DeepFND and HelixPile can be grouted. For grouted piles, we need to define the grout diameter, and the part of the pile which is grouted.
  • What type of loads can i add on a pile cap?
    In DeepFND and in HelixPile, we can define several loads on a pile cap, as follows: A. Single load at the pile cap centroid This is the default option in the software Wizard. The user can automatically define the maximum axial load on the cap, the maximum lateral loads and external moments on each direction (X and Y axis), as well as the torsional moment that can be applied on the cap. B. Point Loads on User-Defined Locations This option allows the user to create load groups of point loads and define the load coordinates, as well as the magnitude of the axial load, and the lateral load and moment at every axis (X and Y). C. Area Loads on the Pile Cap This option allows the user to assign an area pressure load on the whole cap surface, or at user-defined locations. D. Linear Loads on the Pile Cap This option allows the user to assign linear loads between 2 user-defined points on the pile cap.
  • What in the Max Stress Check result i get in the summary table after the analysis?
    The maximum stress check result is the most critical of all structural and geotechnical checks. DeepFND calculates all and reports there the most critical one (biggest). In general, all checks in the program are (applied force/Capacity). So, Max Stress Check is the most critical of: 1. (Maximum Compression Load) / (Compression Capacity) (Geotechnical check) 2. (Maximum Tension Load) / (Tension Capacity) (Geotechnical check) 3. (Maximum plate reaction) / (Plate Ultimate Capacity) (Structural Check) 4. (Maximum Pile Moment) / (Pile Moment Capacity) (Structural Check)
  • How is the structural resistance determined?
    The structural capacity is calculated in accordance to the standards selected by the user and the nature of the section (concrete, steel, timber, composite etc). The user can define the structural section (concrete piles with internal reinforcing cage, steel casing, drivel steel beams with or without concrete covers, timber piles and then the software uses the corresponding design codes.
  • What theory is used for the lateral pile load analysis?
    The software uses P-Y curves to simulate the soil, while an Euler-Bernoulli beam (elastic or inelastic pile behaviour with distributed plasticity along the pile) is used for the pile. A full FEM analysis engine is currently under development and will be implemented in the DeepFND/HelixPile 2021 versions.
  • How does DeepFND consider the pile cap side lateral response (if the cap is inside the soil)?
    For the lateral resistance contribution of the cap there are 2 mechanisms that need to be included, (a) the passive resistance and (b) the bottom/side friction resistance of the pilecap. We have incorporated an automatic calculation of all the lateral springs of a pile cap. The constitutive laws of the pilecap lateral springs used in the software are illustrated bellow:
  • Is pile to pile interaction taken into account and how?
    The user has a number of options available for the consideration of the group interaction factors. The automatic approach corresponds to the methodology proposed in [1], however an extension has been implemented where influence between piles with different dimensions is taken into account.
  • GRUPOS DE PILOTES - LOSAS SOBRE PILOTES
    DeepFND puede diseñar tanto pilotes individuales como grupos de pilotes con múltiples pilotes (se requiere el módulo opcional adicional Grupos de Pilotes). El software también puede diseñar losas sobre pilotes, considerando el efecto combinado del suelo debajo de la losa (módulo adicional a nuestra opción de grupo de pilotes). Pilotes individuales Cabezas de pilotes rectangulares Cabezas de pilotes triangulares Cabezas de pilotes circulares Cabezas de pilotes hexagonales Cabezas de pilotes octogonales Cabezas de pilotes con perímetro definido por el usuario Losas sobre pilotes
  • CAPACIDAD GEOTÉCNICA - TIPOS DE PILAS
    DeepFND implementa todos los métodos científicos aprobados para el diseño de pilas de cimentación profunda. Con DeepFND podemos diseñar pilas perforadas, pilas hincadas, pilas CFA, cajones, pilas perforadas con desplazamiento, micropilotes y pilotes helicoidales. Pilas Perforadas Pilas Hincadas Pilas Perforadas con Desplazamiento Pilas CFA Micropilotes Cajones Pilotes Helicoidales Normas Implementadas: FHWA GEC8 & GEC 10 AASHTO Norlund AASHTO LRFD O’Neil y Reese FHWA 1999
  • DISEÑO ESTRUCTURAL
    DeepFND incorpora muchos códigos y normas de diseño internacionales para el diseño y análisis (estructural y geotécnico) de todos los tipos de pilotes de muro. En DeepFND podemos realizar un diseño de servicio o un diseño factorizado utilizando las normas de EE. UU. y Europa. Podemos seleccionar y cambiar fácilmente entre varios códigos estructurales de EE. UU., Europa, Australia y China. ACI 318-11 y 318-19 (Miembros de Hormigón Armado) ASD 1989 (Diseño de Esfuerzo Admisible - Miembros de Acero) AASHTO LRFD 13ª Edición (Miembros de Acero) - AISC 360 y 360 Allowable (2010 y 2016) Especificaciones de EUROCODE 2, 7 y 8 AASHTO LRFD 6ª, 8ª y 9ª - PEN DOT AASHTO Códigos Europeos (DIN, BS, XP94, DM, DA) Normas Australianas (AS 3600, AS/NZS 4100) Normas Chinas (CN) Código de Edificación de NYC Normas IBC 2015
  • ANÁLISIS AXIAL Y LATERAL DE PILOTES
    DeepFND realiza análisis de pilotes verticales y laterales e incluye varias ecuaciones de capacidad de carga. Recomendaciones sencillas le ayudan a seleccionar el método apropiado dependiendo del tipo de pilote y del método de instalación. Para pilotes regulares: DeepFND implementa múltiples normas de instalación de pilotes (FHWA GEC-8 y 10, AASHTO Norlund, IBC, Código de Edificación de NYC, AASHTO LRFD y más). Para pilotes helicoidales, el software utiliza tanto los métodos de placa individual como de cilindro, reportando el más crítico. Se pueden seleccionar las ecuaciones generales y Helicap. Para el diseño de pilotes verticales, podemos elegir usar ya sea el método de Vesic, o el método de Meyerhoff-Hansen. DeepFND calcula y verifica el torque de instalación de los pilotes helicoidales. Para el análisis lateral de pilotes, DeepFND puede usar la carga definida en la cabeza del pilote y calcular los diagramas de momento desarrollado, corte y desplazamiento del pilote, o puede realizar un análisis de empuje, calculando y presentando la carga lateral requerida para lograr un desplazamiento específico de la cabeza del pilote. DeepFND puede realizar análisis de asentamiento. En el software podemos seleccionar uno de los criterios de aceptación de pilotes implementados, o definir el nuestro.
  • PROPIEDADES DEL SUELO - REGISTROS SPT - REGISTROS CPT
    Los tipos de suelo, las propiedades del suelo y las estratigrafías se pueden definir fácilmente en DeepFND a través de diálogos amigables para el usuario. En DeepFND podemos crear una lista ilimitada de suelos y definir todas las propiedades del suelo rápidamente. El software proporciona varias herramientas de estimación (Estimador SPT y herramientas de estimación parcial para cada propiedad utilizando métodos científicos y ecuaciones). En DeepFND podemos añadir directamente registros SPT y registros CPT, que se pueden utilizar desde el software para estimar varias propiedades del suelo. Definir lista de tipos de suelo Definir lista de estratigrafías (sondeos) Herramientas de estimación de propiedades del suelo Registros SPT Registros CPT
  • INTERFAZ INTERACTIVA SUPERIOR
    DeepFND es un software extremadamente fácil de usar, que ofrece una interfaz de modelo interactiva. En el área del modelo podemos crear diferentes etapas de carga y definir todos los parámetros del proyecto (cargas externas en la cabeza del pilote, propiedades de la sección del pilote, etc.) gráficamente. Todos los elementos en el área del modelo (sondeo, pilote, cargas externas) se pueden acceder y sus propiedades se pueden definir a través de cuadros de diálogo fáciles de usar.
  • GENERACIÓN Y OPTIMIZACIÓN AUTOMÁTICA DE MODELOS DE AUTOMÓVILES
    El asistente de modelos DeepFND se puede utilizar para crear cualquier modelo de cimentación profunda en cuestión de minutos. Podemos utilizar las pestañas del asistente para definir todos los parámetros del proyecto (configuraciones de análisis, tipo de pilote y sección estructural, cargas externas y normas de diseño). El asistente crea el modelo automáticamente, lo que nos ahorra mucho tiempo y esfuerzo para la creación inicial. DeepFND cuenta con una herramienta de optimización automática de longitud. El software puede usar un paso definido para aumentar la profundidad de los pilotes hasta un límite de profundidad definido, calculando la capacidad de tensión y compresión axial en cada paso.
  • INFORMES EXPORTADOS EN PDF Y WORD
    DeepFND puede generar informes extensos para todas las secciones de diseño examinadas (pilotes) y etapas de carga. Los informes en HelixPile son totalmente personalizables: el usuario final siempre puede seleccionar todas las secciones del informe incluidas en el informe final. Los informes de DeepFND pueden incluir tablas y gráficos con todas las propiedades del modelo examinado y los resultados calculados. También podemos optar por incluir en el informe todas las ecuaciones de diseño estructural y el procedimiento de cálculo. Los informes de DeepFND se pueden previsualizar, exportar a formato PDF o exportar a formato Word, para que puedan ser editados posteriormente por el usuario. Seleccionar Secciones de Diseño para Informar Seleccionar Etapas de Construcción para Informar Personalizar Gráficos de Informes Definir el Diseño del Informe Definir las Secciones del Informe Posibilidad de Informar Ecuaciones y Cálculos de Etapas Previsualizar el Informe Exportar Informes en Formatos PDF y Word
  • Estructuras - Códigos y normativas geotécnicas
    Las excavaciones profundas requieren el cumplimiento tanto de normas estructurales como geotécnicas. Te cubrimos con numerosos códigos de diseño y normas internacionales para el diseño y análisis (estructural y geotécnico) de todos los tipos de muros y sistemas de soporte. Puedes realizar un diseño de servicio o factorizado con normas estadounidenses, europeas, australianas o chinas y seleccionar y cambiar fácilmente entre varios estándares de código: ACI 318 2019 (Miembros de hormigón armado) ASD 1989 (Diseño por Esfuerzos Permisibles - Miembros de acero) AASHTO LRFD 9ª Edición (Miembros de acero) AISC 360 y 360-Allowable (2010 y 2016) Especificaciones EUROCODIGO 2, 3, 7 y 8 Combinaciones de carga AASHTO LRFD 9ª Combinaciones de carga CALTRANS LRFD 2012 Combinaciones de carga PEN DOT AASHTO 2012 Códigos europeos (DIN, BS, XP94, DM, DA) BS 6349 Partes 1-2 (Estructuras marinas-Muros de muelle) Códigos canadienses (CSA, NR24-28-2018) Normas australianas (AS 3600, AS/NZS 4100) Normas chinas (CN)
  • MÉTODOS DE ANÁLISIS: LEM, No Lineal, FEM+
    DeepEX implementa todos los métodos científicos aprobados para el diseño de proyectos de excavación profunda. Realice fácilmente un análisis clásico de equilibrio límite, un método de análisis no lineal con resortes Winkler elastoplásticos (viga sobre cimientos elastoplásticos), o un análisis completo de elementos finitos. Un análisis de elementos finitos se puede realizar si agrega y activa nuestro motor de análisis de elementos finitos DeepFEM en cualquier versión de DeepEX: Método de Análisis de Equilibrio Límite (LEM) Método de Análisis No Lineal (NL) Método de Análisis de Elementos Finitos (FEM) - Análisis Combinado (LEM+NL) Análisis Combinado (LEM+FEM)
  • ANÁLISIS DE ELEMENTOS FINITOS 3D
    Genera, analiza y diseña modelos de excavación 3D a gran escala de manera transparente con nuestro potente motor de Análisis de Elementos Finitos 3D. Genera cualquier modelo FEM 3D en segundos con nuestros potentes asistentes Creación y edición de modelos paramétricos – accede y edita todos los elementos en el área del modelo en segundos Realiza FEM 3D considerando la interacción completa suelo-estructura Revisa los resultados en tablas para todas las paredes, puntales y soportes Realiza comprobaciones estructurales en todos los soportes y puntales Revisa las sombras FEM 3D para suelo, paredes y soportes en todas las etapas
  • SISTEMAS DE SOPORTE EN DEEPEX
    Realiza tanto el diseño estructural como geotécnico de muchos sistemas de soporte diferentes. Puedes añadir soportes gráficamente en el área del modelo y modificar fácilmente haciendo doble clic. Cambia fácilmente las secciones de soporte con una extensa base de datos de secciones de acero implementada. Excavaciones en Voladizo Excavaciones Ancladas (Anclajes, Anclajes Helicoidales) Excavaciones Apuntaladas (Pilares y Tirantes de Acero) Cofradías Pilares y Tableros Mecánicos e Hidráulicos Excavaciones de Arriba hacia Abajo (Losas de Concreto Armado) Excavaciones Escalonadas Losas de Concreto para Sótanos Amarres y Pilotes debajo de Losas de Base Pilotes de Cimentación para Estabilidad de Taludes Columnas de Acero Verticales Soportes Fijos y de Resorte Sistemas de Muro de Hombre Muerto Sistemas de Muro de Tipo Bin Excavaciones de Tipo Caja (Tableros de Acero o Concreto) Pozos Circulares
  • MUROS GRAVITACIONALES - MUROS MARINOS - APOYOS DE PILAS - MSE
    DeepEX permite el diseño de Muros de Contención Gravitacionales, Soportes de Pilas y Muros Marinos con los correspondientes módulos adicionales opcionales que pueden ser activados dentro del software. Módulo de Muros Gravitacionales: Permite el diseño de muros de contención gravitacionales de concreto armado de cualquier forma (muros continuos o pilares 3D), calculando los factores de seguridad de deslizamiento, carga y vuelco del muro. Módulo de Apoyos de Pilas: Permite el uso de pilotes de cimentación en secciones de muro gravitacional (creando apoyos de pilas) y cimentaciones de pilotes adyacentes al sitio de excavación. El módulo permite el cálculo de las fuerzas en cada pilote y el diseño lateral y vertical de los pilotes (cálculo de momentos de pilote, cortante y diagramas de desplazamiento, así como el cálculo de la capacidad de carga de los pilotes). Prerrequisito: Módulo de muros gravitacionales Módulo de Muros Marinos - Presiones de Oleaje - Sobrepaso: Permite el diseño de muros marinos, muros de bloques/segmentos con resistencias cortantes individuales y densidades, muros de cajones de muelle (3D) con relleno y más, el cálculo de las presiones del oleaje con Sainflou, McConnel, Proverbios, Combinaciones de carga para British Standards 6349 Partes 1-2 (Estructuras Marinas-Muros de Muelle) y más. Prerrequisito: Módulo de muros gravitacionales Módulo de MSE Muros - Refuerzos de Suelo: Permite el diseño de terraplenes con refuerzos de suelo (rejillas y tiras de acero, georedes, geotextiles) y columnas de piedra. Los refuerzos de suelo pueden ser utilizados para estabilizaciones de taludes. Prerrequisito: Módulo de muros gravitacionales
  • TIPOS DE PAREDES EN DEEPEX
    DeepEX puede ser utilizado para el diseño y análisis de todos los tipos de paredes comúnmente utilizados. Define las propiedades de la sección de la pared de manera eficiente a través de diálogos fáciles de usar y actualiza fácilmente las listas de materiales estructurales con materiales nuevos o estándar. Una extensa base de datos de refuerzo de barras de acero y secciones de acero te cubre para trabajar en cualquier parte del mundo. Paredes de Pilotes Militares y Encofrado Paredes de Tablestacas (Acero, Madera, Vinilo) Paredes de Pilotes Secantes - Paredes de Pilotes Tangentes Paredes de Diafragma de Concreto (Paredes de Lodo) Paredes Combinadas de Tablestacas (Sistema de Pila Rey - tablestaca) Tablestacas en Caja Paredes de Pilotes Militares y Concreto Vaciado con Tremie (Paredes SPTC) Paredes y Pilotes Pretensados y de GFRP
  • PROPIEDADES DEL SUELO - REGISTROS SPT - REGISTROS CPT
    Los tipos de suelos, las propiedades del suelo y las estratigrafías se pueden definir fácilmente en DeepEX a través de diálogos amigables para el usuario. Cree una lista ilimitada de tipos de suelo y defina rápidamente todas las propiedades del suelo. Estime rápidamente las propiedades del suelo con varias herramientas de estimación (SPT, Estimador CPT y otras herramientas con métodos y ecuaciones de estimación aceptadas por la industria). El módulo adicional, Informe de Estimación del Suelo y Análisis Estadístico, le permite realizar un análisis estadístico de los parámetros del suelo estimados con una amplia gama de métodos. El análisis estadístico nos permite estimar la variabilidad de las propiedades del suelo con la profundidad o en el plano del proyecto. Luego, puede seleccionar los valores de diseño deseados en función del nivel de confianza deseado. En DeepEX, podemos agregar directamente registros SPT y registros CPT, que pueden ser utilizados desde el software para estimar diversas propiedades del suelo.
  • ANÁLISIS DE LA ESTABILIDAD DE LA LADERA Y ANCLAJE DE SUELOS
    DeepEX implementa herramientas que pueden evaluar la estabilidad global de modelos de excavación y superficies de ladera (simples o reforzadas con anclajes de suelo). DeepEX puede calcular e informar sobre la superficie de ladera más crítica y el factor de seguridad de estabilidad de la ladera con el uso de varios métodos científicos. Los anclajes de suelo pueden ser utilizados en las superficies de ladera. DeepEX calcula los efectos de los anclajes de suelo en el análisis de estabilidad de la ladera. Método de Bishop Método de Morgenstern-Price (Equilibrio Límite General) Método de Spencer Método Sueco Ordinario (método de cortes) Normas francesas Clouterre para el diseño de anclajes de suelo
  • SECCIONES CORTADAS EN 2D Y MODELOS DE EXCAVACIÓN EN 3D
    Afronta desafíos de diseño adicionales con módulos DeepEX adicionales. No todas las excavaciones profundas requieren las mismas capacidades. Puedes ampliar las capacidades de tu solución con las siguientes versiones/módulos de DeepEX: DeepEX 2D: Para el diseño y optimización de todas las secciones de diseño de proyectos en 2D. DeepEX 3D: Exporta el modelo de marco 3D con todos los niveles de refuerzo, para que se pueda calcular el proyecto completo con todos los soportes. Con DeepEX 3D también podemos realizar una estimación del costo total para el proyecto completo. Se pueden añadir módulos adicionales en cualquiera de las versiones principales de DeepEX (2D y 3D), aumentando las capacidades del software: - Módulo de exportación de dibujos a DXF: Con este módulo todas las secciones 2D para todas las etapas de construcción y secciones de pared pueden ser exportadas a DXF y abiertas en cualquier software CAD. En DeepEX 3D, la misma característica puede ser utilizada para la exportación del plan completo del proyecto y vistas laterales. Módulo de conexión de acero: Permite generar fácilmente todas las conexiones de acero para walers a puntales y walers de esquina. Una vez completado el diseño, las conexiones de acero pueden ser optimizadas con un clic del botón. El programa ajustará automáticamente los tamaños de soldadura y aplicará refuerzos de placa si es necesario. Las conexiones de acero pueden evaluarse con AISC 360-16 permitido o LRFD. Módulo de exportación de modelo 3D y hologramas: Este módulo permite exportar el modelo de excavación profunda a un escritorio 3D, realidad virtual o modelo de realidad aumentada (HoloLens). Visualiza fácilmente el modelo de excavación 3D antes de que se construya y comunica con tus clientes algunas de las complejidades y etapas de construcción. De esta manera, verifica los posibles desafíos de construcción (cimientos de edificios adyacentes, servicios públicos subterráneos, etc.), así como impresiona a los clientes con la vista del proyecto final antes de que se construya. El módulo permite importar edificios 3D de vuelta al entorno de diseño. Módulo de análisis de elementos finitos: DeepFEM, puede añadirse y activarse en cualquier versión del software, permitiendo que se realice el método de análisis de elementos finitos. El método FEM considera la interacción completa suelo-estructura y puede ser utilizado para analizar modelos complicados, pilas de fundaciones adyacentes, túneles y más.
  • SIMULACIÓN Y ANÁLISIS DE TÚNELES - SEM, TBM, CUBIERTA A CIELO ABIERTO
    Modela y analiza túneles TBM, NATM o de Caja con el método de Análisis de Elementos Finitos (Prerrequisitos: Módulo FEM). Los asistentes nos brindan la flexibilidad para crear fácilmente geometrías de túneles ovales y complejas. Las secciones y segmentos de túnel se pueden activar y desactivar en cualquier etapa. Las pérdidas de suelo y el inyectado de presión también pueden ser modelados con facilidad.
  • INFORMES EXPORTADOS EN PDF Y WORD
    DeepEX puede generar informes extensos para todas las secciones de diseño y etapas de construcción examinadas. Los informes en DeepEX son totalmente personalizables: el usuario final siempre puede seleccionar todas las secciones del informe incluidas en el informe final. Los informes de DeepEX pueden incluir tablas y gráficos con todas las propiedades del modelo examinadas y los resultados calculados. También podemos optar por incluir en el informe todas las ecuaciones de diseño estructural y el procedimiento de cálculo. Los informes de DeepEX se pueden previsualizar, exportar a formato PDF o exportar a formato Word, para que puedan ser editados posteriormente por el usuario. Seleccionar Secciones de Diseño para Informar Seleccionar Etapas de Construcción para Informar Personalizar los Gráficos del Informe Definir la Disposición del Informe Definir las Secciones del Informe Posibilidad de Informar Ecuaciones y Cálculos de Etapas Resultados de Estimación de Costos Resultados de Marcos en 2D y 3D Previsualizar el Informe Exportar Informes en formatos PDF y Word
  • INTERFAZ DE SOFTWARE Y CONTROL POR VOZ
    DeepEX ofrece un software extremadamente fácil de usar con una interfaz de modelo interactivo. Puede dibujar soportes, cargas y elementos en el área del modelo para cada etapa de construcción, y realizar gráficamente excavaciones, rellenos y operaciones de desagüe. Todos los elementos en el área del modelo (muros, soportes, nodos superficiales, cargas externas) se pueden acceder con el ratón y sus propiedades pueden cambiarse en cualquier momento mediante diálogos amigables. Genere rápidamente modelos con un asistente poderoso. Finalmente, puede hablar con DeepEX y decirle que prepare un modelo de excavación profunda "Hey DeepEX..." "Crea una excavación de 10 metros de profundidad con puntales".
  • SECCIONES DE DISEÑO MÚLTIPLES Y ETAPAS DE CONSTRUCCIÓN
    Todo su diseño puede estar en un solo archivo. Puede crear un número ilimitado de secciones de diseño en el mismo archivo, simulando todas las secciones de pared del proyecto y diferentes profundidades de excavación. En cada sección de diseño, se pueden definir diferentes parámetros del suelo y estratigrafías, secciones de pared, sistemas de soporte y suposiciones de diseño. Cree un número ilimitado de etapas de construcción, simulando los procedimientos de diseño completos o las condiciones en cada sección de diseño. DeepEX presenta resultados extensos para cada etapa, ayudando a identificar la condición más crítica. Examine fácilmente alternativas dentro de diferentes secciones de diseño. Esto le permite identificar rápidamente la solución de excavación profunda más crítica o más eficiente.
  • Question goes here?
    Answer goes here lorem ipsum dolor sit amet, consectetur adipiscing elit. Aenean finibus commodo nulla. Ut ut accumsan diam, dignissim ultrices turpis. Sed quis bibendum tortor. Ut eu pulvinar augue. Vestibulum at ante risus. Nunc rutrum ante lorem, in fringilla velit porttitor quis. Etiam vulputate mi vel lectus egestas, vel varius purus tempor. Donec neque massa, vestibulum id leo ut, suscipit hendrerit felis. Maecenas sollicitudin libero eu dui bibendum molestie. Etiam sit amet interdum nunc. Curabitur ac consectetur mi. Proin ac posuere est. Duis tincidunt vehicula pellentesque. Suspendisse diam lorem, ultricies in malesuada at, gravida non lorem. Nunc nec ipsum purus. Nullam fringilla, odio non vestibulum facilisis, mi eros blandit nisl, tincidunt maximus metus erat eu magna. Donec quis nisl vitae purus pellentesque rutrum sed vel leo. Donec sed sagittis arcu. Nulla et nunc luctus, laoreet elit vel, porttitor lacus.
  • Question goes here?
    Answer goes here lorem ipsum dolor sit amet, consectetur adipiscing elit. Aenean finibus commodo nulla. Ut ut accumsan diam, dignissim ultrices turpis. Sed quis bibendum tortor. Ut eu pulvinar augue. Vestibulum at ante risus. Nunc rutrum ante lorem, in fringilla velit porttitor quis. Etiam vulputate mi vel lectus egestas, vel varius purus tempor. Donec neque massa, vestibulum id leo ut, suscipit hendrerit felis. Maecenas sollicitudin libero eu dui bibendum molestie. Etiam sit amet interdum nunc. Curabitur ac consectetur mi. Proin ac posuere est. Duis tincidunt vehicula pellentesque. Suspendisse diam lorem, ultricies in malesuada at, gravida non lorem. Nunc nec ipsum purus. Nullam fringilla, odio non vestibulum facilisis, mi eros blandit nisl, tincidunt maximus metus erat eu magna. Donec quis nisl vitae purus pellentesque rutrum sed vel leo. Donec sed sagittis arcu. Nulla et nunc luctus, laoreet elit vel, porttitor lacus.
  • Question goes here?
    Answer goes here lorem ipsum dolor sit amet, consectetur adipiscing elit. Aenean finibus commodo nulla. Ut ut accumsan diam, dignissim ultrices turpis. Sed quis bibendum tortor. Ut eu pulvinar augue. Vestibulum at ante risus. Nunc rutrum ante lorem, in fringilla velit porttitor quis. Etiam vulputate mi vel lectus egestas, vel varius purus tempor. Donec neque massa, vestibulum id leo ut, suscipit hendrerit felis. Maecenas sollicitudin libero eu dui bibendum molestie. Etiam sit amet interdum nunc. Curabitur ac consectetur mi. Proin ac posuere est. Duis tincidunt vehicula pellentesque. Suspendisse diam lorem, ultricies in malesuada at, gravida non lorem. Nunc nec ipsum purus. Nullam fringilla, odio non vestibulum facilisis, mi eros blandit nisl, tincidunt maximus metus erat eu magna. Donec quis nisl vitae purus pellentesque rutrum sed vel leo. Donec sed sagittis arcu. Nulla et nunc luctus, laoreet elit vel, porttitor lacus.
  • Question goes here?
    Answer goes here lorem ipsum dolor sit amet, consectetur adipiscing elit. Aenean finibus commodo nulla. Ut ut accumsan diam, dignissim ultrices turpis. Sed quis bibendum tortor. Ut eu pulvinar augue. Vestibulum at ante risus. Nunc rutrum ante lorem, in fringilla velit porttitor quis. Etiam vulputate mi vel lectus egestas, vel varius purus tempor. Donec neque massa, vestibulum id leo ut, suscipit hendrerit felis. Maecenas sollicitudin libero eu dui bibendum molestie. Etiam sit amet interdum nunc. Curabitur ac consectetur mi. Proin ac posuere est. Duis tincidunt vehicula pellentesque. Suspendisse diam lorem, ultricies in malesuada at, gravida non lorem. Nunc nec ipsum purus. Nullam fringilla, odio non vestibulum facilisis, mi eros blandit nisl, tincidunt maximus metus erat eu magna. Donec quis nisl vitae purus pellentesque rutrum sed vel leo. Donec sed sagittis arcu. Nulla et nunc luctus, laoreet elit vel, porttitor lacus.
  • Question goes here?
    Answer goes here lorem ipsum dolor sit amet, consectetur adipiscing elit. Aenean finibus commodo nulla. Ut ut accumsan diam, dignissim ultrices turpis. Sed quis bibendum tortor. Ut eu pulvinar augue. Vestibulum at ante risus. Nunc rutrum ante lorem, in fringilla velit porttitor quis. Etiam vulputate mi vel lectus egestas, vel varius purus tempor. Donec neque massa, vestibulum id leo ut, suscipit hendrerit felis. Maecenas sollicitudin libero eu dui bibendum molestie. Etiam sit amet interdum nunc. Curabitur ac consectetur mi. Proin ac posuere est. Duis tincidunt vehicula pellentesque. Suspendisse diam lorem, ultricies in malesuada at, gravida non lorem. Nunc nec ipsum purus. Nullam fringilla, odio non vestibulum facilisis, mi eros blandit nisl, tincidunt maximus metus erat eu magna. Donec quis nisl vitae purus pellentesque rutrum sed vel leo. Donec sed sagittis arcu. Nulla et nunc luctus, laoreet elit vel, porttitor lacus.
  • Question goes here?
    Answer goes here lorem ipsum dolor sit amet, consectetur adipiscing elit. Aenean finibus commodo nulla. Ut ut accumsan diam, dignissim ultrices turpis. Sed quis bibendum tortor. Ut eu pulvinar augue. Vestibulum at ante risus. Nunc rutrum ante lorem, in fringilla velit porttitor quis. Etiam vulputate mi vel lectus egestas, vel varius purus tempor. Donec neque massa, vestibulum id leo ut, suscipit hendrerit felis. Maecenas sollicitudin libero eu dui bibendum molestie. Etiam sit amet interdum nunc. Curabitur ac consectetur mi. Proin ac posuere est. Duis tincidunt vehicula pellentesque. Suspendisse diam lorem, ultricies in malesuada at, gravida non lorem. Nunc nec ipsum purus. Nullam fringilla, odio non vestibulum facilisis, mi eros blandit nisl, tincidunt maximus metus erat eu magna. Donec quis nisl vitae purus pellentesque rutrum sed vel leo. Donec sed sagittis arcu. Nulla et nunc luctus, laoreet elit vel, porttitor lacus.
  • RCsolver Features and Capabilities
    - ACI-318, Eurocode 2, Eurocode 8 Specifications. - EC2 national annexes of more than 10 countries. - Superior interactive interface. - Design and evaluate concrete members in minutes. - Powerful options. - Time-saving design approach. - Design and Assessment modes. - Great for engineers, consultants, and contractors. - Quick evaluation of many alternatives. - Full presentation of all main and partial calculations. - Extensive verification and training examples. - Extensive theory manuals. - Great tool for the teaching and learning of concrete design. - Great tool for the quick estimation of existing reinforcement. - Detailed summary reports in word and pdf.
  • Gráficos personalizables
    Con SiteMaster, puedes generar informes temporales personalizables en cualquier profundidad del inclinómetro.
  • Tabla resumen
    SiteMaster compila una tabla resumen para todos los inclinómetros, que presenta el estado actual del proyecto.
  • Mapa del sitio
    Agregue el mapa del sitio directamente desde Google Maps, localice inclinómetros en un mapa y vea los contornos de desplazamiento.
  • Límites de advertencia
    SiteMaster te permite predefinir límites de advertencia de desplazamiento y velocidad. Cuando se excede un límite de advertencia, SiteMaster te advierte con el color de límite apropiado.
  • Escáner de lógica de suma de comprobación:
    SiteMaster examina las lecturas de sumas de comprobación, señalando posibles inconsistencias con colores fáciles de distinguir.
  • Opciones de corrección
    Las correcciones se pueden aplicar a un inclinómetro o a una lectura individual. Las opciones de corrección disponibles incluyen: a) Correcciones espirales b) Correcciones de base transpuesta c) Transposición de puntos a lo largo de la profundidad d) Correcciones rotacionales e) Correcciones de desplazamiento de sesgo f) Ajuste de la constante de la sonda para una lectura individual g) Desplazamientos vectoriales con profundidad
  • Sistema de datos inteligente
    SiteMaster cuenta con un sistema de gestión de datos inteligente y flexible. Los datos críticos se almacenan en archivos XML, y los datos se pueden ajustar fácilmente utilizando el explorador de Windows.
  • Plano clave
    ¿Dónde está ese inclinómetro? Utiliza nuestro plano clave para localizar ese inclinómetro con precisión
  • Plano del sitio
    Puede ingresar una vista del plano del sitio en formato JPEG, personalizar la escala y trazar el progreso del desplazamiento máximo en el plano para todos los inclinómetro
  • Características de Trench 2019
    Estabilidad tridimensional según la norma alemana DIN 4126. Estabilidad bidimensional con cuñas o presiones activas. Cargas en 2D y 3D, incluyendo edificios, etc. Variar densidades de lodos, dimensiones de paneles, etc. Definiciones alternativas de factores de seguridad. Uso de patrones de sobrecarga uniformes o personalizados. Factor de seguridad proporcionado a lo largo de la profundidad de la trinchera. Múltiples combinaciones de análisis con diferentes capas o propiedades. Realizar estudios paramétricos sin cambiar los datos predeterminados. Interfaz de usuario amigable y salidas completas de pantalla e impresora. Unidades métricas e inglesas disponibles.
  • STEELBEAM
    - AISC ASD 9th codes - AISC LRFD 13th - AISC, European, and British steel sections - Check H Beams and Pipe Sections - Section Optimization options - Check multiple sections at once - Full report generation with all equations - Generate reports in Word and Pdf
  • I try to open the program but the main window does not appear in my screen.
    There are a couple of reasons why this might happen: - Your Windows drivers need to be updated. You can run the following file, which is supplementary driver: Update Windows CBIOS Usually this driver upgrade resolves the issue and the software can be accessed normally. The same driver upgrade can assist the Windows in your device to recognise the USB key. In case it's not recognized immediately, or there is an exclamation mark in the device manager of the Operating System for the "Crypto-Box 2 USB" device please let us know, so that we can offer further assistance. - Another instance of the software is still open, or the software was not closed properly. You cannot run 2 instances of the same program. Please take a look at your task bar in case the program is already open. If not, you can take a look at the device's Task Manager. If the program appears open in the background, you can try to force stop it from the Task Manager and try to open it again. - You had an external monitor with higher resolution previously connected. Hover mouse over the taskbar button, wait for the preview small window to appear, right click, select to move the window. Bring it in view either with arrow keys or with the mouse. Arrow keys tend to work better. (try left and up)
  • I can access only the LEM analysis method - the other methods seem unavailable.
    If you see in the Analysis Methods only the LEM option as available, it means that probably during the first use of the program you selected the option to lock all other methods. To reverse that, you can do the following: 1. Open the Documents folder in your pc and locate a subfolder named DeepEXTemporaryFiles 2. Locate and delete a file named AnalysisStartMethod 3. Open the software. A window will pop up, asking you to select which method will be selected each time you open the program (i would recommend to keep selected the option for LEM, as it is the method that you should run first in most cases, but this is up to you). At this point, please make sure that the option far down in this window is NOT SELECTED - this is the option that locks all other methods and allows the use of LEM only.
  • Is DeepEX a Finite Element analysis software?
    DeepEX introduces a new additional module, the Finite Element Analysis. The new module enables users to analyze conditions, that consider full soil-structure-interaction. Elasticty models include Linear elastoplastic, and hyberbolic soil models. With the finite element analysis module activated, the software capabilities are greatly expanded and the software can take into consideration neightbouring structures and foundation piles, analyze SEM and TBM tunnels and much more. With FEM, DeepEX provides practically all methods of analysis for deep excavation design. The basic version does not include Finite Elements, though, our Non-linear analysis engine produces close-to-the-reality wall deflections and wall moments. External comparisons prove that the results using DeepEX are very close to the one produced by other Finite Element analysis programs.
  • Which analysis method should I use?
    The selection of the analysis method is a responsibility of the end user. All methods have certain advantages and limitations, so it is usually highly recommended that we perform all types of analysis and consider the most critical results. Conventional Limit Equilibrium Analysis Method is usually required. Non-linear Analysis Method results are usually more realistic, especially in multi-level excavation projects, since the construction staging is taken into consideration. Finite Element Method is considered to produce very accurate results. It can analyze conditions that consider full soil-structure interaction.
  • What analysis methods do you include in DeepEX software?
    DeepEX Software implements all common methods for the design and analysis of deep excavations systems. In the basic version (software core), the program includes the conventional Limit Equilibrium Method, as well as the Non-linear Analysis method (with use of elastoplastic Winkler springs). Finally, a combined method (LEM+NL) is availabe. With the Finite Element Analysis additional, optional module, the user can include in the software the advanced FEM engine of the software (DeepFEM) and analyze wall systems with the Finite Element Analysis method, considering full soil-structure interaction. Conventional Limit Equilibrium Analysis Method (LEM). Limit equilibrium is an analysis method, where limit state conditions are assumed. For excavations and earth retaining structures this usually means that earth pressures are assumed on both the retained and excavated sides. These pressures may represent a failure state such as active or passive lateral earth pressures, or an assumed redistribution such as diagrams by Peck or FHWA. In Limit Equilibrium Analysis, the retaining wall is analyzed to provide moment and force equilibrium, when possible. Support reactions are also calculated, typically by using the tributary area method. Non-Linear (Beam on elastoplastic foundations) Method (NL). DeepEX implements a non-linear finite element code for the analysis of the mechanical behavior of flexible earth retaining structures during all the intermediate steps of an open excavation. The non-linear engine is empowered by many unique advanced features. DeepEX offers the following elastoplastic soil models: a) Linear elastic - perfectly plastic b) Hyperbolic soil model c) Subgrade reaction soil model d) Small Strain Hardening model On the reloading part, every soil model has a linear reloading elasticity parameter. Such a parameter should typically range from 2 to 4 times the loading elasticity value (with average 3). In excavations, the reloading elasticity parameter typically describes the remaining soil below the excavation while the loading elasticity is mostly applicable for soil on the retained side. In a non-linear analysis the excavatio n models reduced to a plane problem, in which a unit wide slice of the wall is analyzed, as outlined in the Figure below. Therefore, DeepEX is not suitable to model excavation geometries in which three-dimensional effects may play an important role. In the modelling of the soil-wall interaction, the very simple yet popular Winkler approach is adopted. The retaining wall is modelled by means of beam elements with transversal bending stiffness EI; the soil is modelled by means of a double array of independent elastoplastic springs; at each wall grid point, two opposite springs converge at most. Limit Equilibrium and Non-Linear Analysis Combination Method (LEM+NL). In this case, DeepEX will first use the LEM method in order to calculate the wall embedment safety factors, and then will run the analysis with the soil springs in order to calculate all other parameters (support reactions, soil pressures, wall moment and shear stresses, wall displacements etc.). In stepped excavations and deadman wall systems, a part of the passive pressures of the back wall is transferred to the front wall as an active impact load when the LEM or the LEM+NL methods are used. The magnitude of this additional load is affected by several parameters, like the depth of the back wall (thus the passive pressures), the distance between the two walls etc. Finite Element Analysis Method (FEM). FEM analysis can consider all construction stage effects and enables us to model full soil-structure interaction. Soil is modelled with a mesh of quadratic triangular finite elements. DeepEX does all the stiffness calculations and help s us to estimate FEM analysis parameters. In FEM, the soil model of each soil type can be defined easily. DeepEX has implemented several models like Mohr-Coulomb, Soil Hardening, Cam Clay and more. It considers drained and undrained clay behavior and it can perform water flow analysis. DeepFEM can be used within the DeepEX software interactive interface, to analyze composite models like braced excavations with struts and rakers. Anchored walls. Deadman wall systems and more. It can calculate all analysis results – soil and water pressures, wall moment shear and displacement diagrams, support reactions, structural and geotechnical ratios, surface settlements and more. The results can be presented in tables and graphically on the model area for each stage. Limit Equilibrium and Finite Element Combination Method (LEM+FEM). In this case, DeepEX will first use the LEM method in order to calculate the wall embedment safety factors, and then will run the analysis with the finite elements in order to calculate all other parameters (support reactions, soil pressures, wall moment and shear stresses, wall displacements etc.). In stepped excavations and deadman wall systems, a part of the passive pressures of the back wall is transferred to the front wall as an active impact load when the LEM or the LEM+NL methods are used. The magnitude of this additional load is affected by several parameters, like the depth of the back wall (thus the passive pressures), the distance between the two walls etc.
  • What water analysis methods do you include in DeepEX?
    The software offers the following options for modeling groundwater: Hydrostatic: Applicable for both conventional and elastoplastic analysis. In ELP, hydrostatic conditions are modeled by extending the “wall lining” effect to 100 times the wall length below the wall bottom. Figure: Water pressures – Simplified flow Simplified flow: Applicable for both conventional and elastoplastic analysis. This is a simplified 1D flow around the wall. In the NL analysis mode, the traditional NL water flow option is employed. Figure: Water pressures – Hydrostatic pressures Full Flow Net analysis: Applicable for both conventional and elastoplastic analysis. Water pressures are determined by performing a 2D finite difference flow analysis. In NONLINEAR, water pressures are then added by the UTAB command. The flownet analysis does not account for a drop in the phreatic line. Figure: Water pressures – Full flownet User pressures: Applicable for both conventional and NL analysis. Water pressures defined by the user are assumed. In the nonlinear analysis, water pressures are added by the UTAB command. Figure: User defined water pressures options in DeepEX
  • How am I sure that the results produced by DeepEX are accurate?
    We have checked thoroughly all aspects and methods included in DeepEX. We have performed extensive verification examples, matching deflections from real projects throughout the United States. We can provide on demand an extensive verification document, containing a big number of verification examples, comparing software results with manual calculations and calculated deflections with real-project measurements. You can open the software verification document in pdf here:
  • Why does the free length of my tiebacks readjusts when i analyze my model?
    If the anchors free length change each time you run the analysis,despite the user changes, probably you have selected the option to use "Auto Canadian" or "Auto Italian" tiebacks free length in your design. If so, no matter what you define, the software uses the selected method recommendation and readjusts the lengths: This option (the Auto Canadian) is the default when you generate a model with the Wizard and some users do not notice it to change it according to their preference: If you wish to use User-Defined lengths, simply access the Draw Supports drop down in the general tab of the software (as presented in the first image above), and change from your selection to the first option "User". This will keep your changes without adjusting when you run the analysis.
  • How to define custom load combinations in DeepEX?
    1. You need to press on the button "Mult." in the Analysis tab of the software (the load combinations dialog appears) and you can access there the "User-Defined Combinations" tab: 2. In the boxes there you can define the factors manually for each property (the names of the parameters are self-explanatory in most cases): 3. After closing this dialog, you can access the drop down next to the "Single" button in the Analysis tab of the program and assign the User Defined Approach:
  • I receive a warning that "normal pressures below the excavation" are required
    DeepEX software provides a number of warnings after the analysis. Some of these warnings are critical and have to do with check ratios that are not satisfied. These warnings (marked with red) need to be taken seriously under consideration by the user. The software gives some optimization recommendations that can be followed, or the user can edit the model manually. Some of the provided warnings (marked with orange) are usually general recommendations according to general practice, or things to pay attention. This message is one of these non critical recommendations, asking to check that the active pressures below the excavation level at not 0. This can be managed from the Drive pressures drop-down in the Analysis tab of DeepEX, if there is selected the option "Normal" and you see active pressures on the pressure diagrams below the excavation you are fine.
  • How can I change the default DeepEX parameters?
    In order to change the software default settings, the user account has to have admin rights in the device, since the default file is located in the pc program files. The procedure is to start the software as administrator, open the Settings dialog from the Help tab and press to set the current project as default. Please review the steps below: A. With the software closed, take the mouse over the software icon in your Desktop and RIGHT-CLICK on it. B. From the menu that appears, please select to run the software as administrator. C. Then, the Default settings dialog can be accessed in the Help tab of DeepEX, perform the changes and select to set current project as Default. This will change the default file that is loaded when the software normally opens.
  • Can i include all the construction stages in a DeepEX model?
    In DeepEX it is not only available, but also highly recommended to create all intermediate construction stages in an examined project model. The software calculates and presents results for each stage, which is important since the last stage is not always the most critical one. In Limit Equilibrium Method, each stage is independent, thus wall deflections (and likely wall bending moments) are not realistic for cases with multiple supports. In Non-linear and Finite Element analysis methods a strict staging is required so the methods can converge and produce realistic results. With these methods, the initial stage is geostatic without excavation. Wall deflections and wall moments depend on construction staging. Figure: Wall deflection diagram, wall moments and support reactions in different stages
  • Wall embedment Safety Factors in DeepEX
    For the wall embedment, DeepEX calculates the Rotational, Passive and Length FS, taking into consideration the driving and resisting moments and shear forces below the last support, and available length respectively: After the analysis, you can access the Wall embedment FS table results and review what is going on on each wall/ in each stage A general recommendation could be you to locate the most critical (lowest) of the 3 calculated factors in each stage (FSpas, FSrot and FSEmbed or length) and make sure that: 1. In Service Conditions, FSmin > 1.5 in the cantilever excavation stage, FSmin > 1.4 in all other stages with activated supports. 2. When you use Load factors (i.e. AASTHO settings Strength conditions or Eurocode 7 Combinations), FSmin > 1.2 in the cantilever excavation stage, FSmin > 1 in all other stages with activated supports.
  • How are the settlements calculated in DeepEX?
    In DeepEX we provide 3 analysis methods: A. The classical Limit Equilibrium Method (LEM) B. The Non-Linear analysis method with use of elastoplastic Winkler springs (NL) C. The Finite Element Analysis Method (FEM). The FEM engine is available as an additional optional module within the software. About Settlements in DeepEX: - The settlement analysis in LEM is semiempirical. It estimates first horizontal displacements and then goes to estimate Vertical. If corrections to the method by Clough are made (available in the software), then the method is equivalent to the one presented by Storer (see the attached file). - In NL the horizontal displacement is calculated directly from the wall displacement. We have expanded on the NL analysis to consider if the wall base is moving. Then, the displaced horizontal volume is transformed to a settlement volume. - In FEM the settlement contours are calculated automatically.
  • Wall Passive, Active and Water widths in DeepEX
    In DeepEX software, in the wall sections dialog, user can define the wall spacing, as well as, the widths to be used in the calculations of the active, passive and water pressures. The following options are available: - Width d is originally the H beam flange size (if you use H steel beams as soldier piles). These are supposed to be driven piles. If you wish to convert them to drilled piles, you change the width manually to actually specify the diameter of the hole were the steel beam will be installed and covered with concrete. If you do reinforced concrete piles, then directly the width d is the diameterth of the concrete pile. - S is the wall spacing. For diaphragms and sheet piles you can use the value "1 ft" or "1 m" to review the results on screen per ft (or per meter) of the wall. In general, all the result values reported on screen are divided with the wall spacing to be presented /ft (or /m). For secant pile walls you define the center to center distance for every other pile. For tangent and soldier piles you define the center to center distance of each pile. - The Passive, Water and Active widths are the widths used below the excavation for the calculation of passive, water and active pressures respectively. For continuous walls (like secant piles, tangent piles, diaphragms, sheet piles etc), normally you define the same value to all these parameters (Spacing = Water width = Passive width = Active width). For non-continuous wall sections like soldier pile walls, there is no lagging below the excavation. In this case it is recommended to take: For Passive Width: 2.5 to 3 times the pile width d (H beam flange width) (for driven steel piles) or 2.5 to 3 times the pile width d (diameter) (for circular drilled piles). This value is limited by the spacing, so if 2.5*Pile diameter > Spacing, you just use the spacing. For Water and Active width: These should be equal to the flange or pile diameter, depending on the pile type (as above). By pressing the "?" button in the wall sections dialog, all these options are presented and explained.
  • Can I design both permanent and temporary walls in DeepEX?
    DeepEX can design both the temporary and the internal permanent walls. The user can add the permanent walls to the model using the “Draw left/right wall element” tool (see question #16). This allows the user to actually draw an additional wall element that can be placed either along the main wall, or on the left or right side of the main wall. The additional wall elements can be used as main or slave walls. Figure: External permanent and internal permanent walls in a metro station project designed with DeepEX
  • How to adjust the impact load on deadman systems and stepped excavation walls?
    When you have a system of walls like a stepped excavation or a deadman system, then the LEM analysis takes into consideration the interaction between the 2 walls. Basically, depending on the distance of the 2 walls and the height of the back deadman wall, if the passive pressures of the back wall do not have enough space to be distributed into the soil, a portion of them will be added in the active pressures of the front wall as an additional impact load. In DeepEX, this additional load in calculated when you use the Limit Equilibrium method (LEM), or the combination method (LEM+NonLinear analysis), and the impact load is distributed on the wall, affecting directly the active pressures on the front wall. In reality, not all this pressure is transferred. A big portion of it will be actually held by the back wall, because of the back wall passive resistance. This reduction is not taken into consideration automatically in DeepEX. In the program, we have a factor for this case, called Impact Load Adjustment Factor. There is a semi-empirical method that suggests to run the analysis and review the passive wall embedment FS of the back wall, and use a value like 1/FSpassive (or more if you wish to be more conservative) as an impact load adjustment factor.
  • How to apply vertical adhesion for undrained clays in DeepEX?
    To apply vertical adhesion for clays you need to have the Limit Equilibrium Analysis method selected (the adhesion is used in general, just you need to switch to LEM to pass these settings for now). If you do so, then in the same drop down you can define the wall friction, you will see options to use vertical adhesion for clays on each wall side, you can click on the items you wish to apply: Then, you can double-click on the wall and access the "Advanced Features" tab of the dialog that appears, where you can define the vertical adhesion as a percentage of the undrained shear strength, Su:
  • How can i add a CPT log in your software?
    The user can create the file in excel and then export it as tab delimited. The file can be of .txt or .cor format. The files should follow a specific format - 1st row should be parameter names, second row should be the units, and then row by row (without the first column numbering), we need to include four specific columns as presented in the image below: After the cpt log import, the user needs to press on the "Process Data" button, so the rest of the properties are estimated:
  • How does DeepEX take into consideration the loads from adjacent buildings?
    In DeepEX we can inlcude any commom type of external loads, either on the soil suftwace (strip loads or point loads), or loads directly applied on the wall. A building can be added on the model area as an external 3D building load, or simulated as an external strip surcharge: 1. Adding a building load: From the General tab of DeepEX we can select to add a building load and next click on the ground, close to the point where we wish to apply the building load. In the dialog that appears, we can define the exact building position, building size as well as several building properties (number of superstructure/understructure floors, number of columns, beam and column loads etc.): 2. Adding a building as an external strip surcharge: From the General tab of DeepEX, select to add a surface strip surcharge to the model: Click on the model surface on 2 points, close where you wish to apply the building load: In the dialog that appears we can define the exact load possition, magnitude and type (permanent/temporary). In addition, if we wish to include the building foundation, we can unselect the option “Is Surface”. This way we can also edit the load elevation, defining the foundation level for the load application.
  • Can DeepEX consider a sealed excavation?
    In the Analysis tab of DeepEX, we can choose to create a sealed excavation (create a liner effect). Figure: Sealed excavation option in DeepEX Figure: Water pressure diagram when sealed excavation option is selected
  • What are the implemented methods for the earth coefficients Ka and Kp?
    In general, we recommend you to use either the Automatic method for the earth coefficients, or the User Mode, where you can select the method for the calculation of Ka Kp. Ideally, you can define the soil properties you wish (friction angle and wall friction) and see directly the calculated earth coefficients on the model area for each soil type. With a few tries, you can define realistic soil properties: Automatic Mode (Recommended): If you select the Automatic approach (which is recommended), the software uses the following methods (according to the defined model options - straight or inclined surfaces, use of wall friction or not, use of seismic pressures or not): A tool that can help you estimate the properties a bit faster can appear if you type in the Command line of the software (below the stages) the command KA ESTIMATE and press enter. In that dialog you can try sets of friction angles/wall frictions and see fast the calculated Ka properties with different methods (what interests you is the Kah = horizontal component). A similar tool appears for Kp if you use the command KP ESTIMATE and press enter. User Mode: In User mode, you can step in and select the method for each wall driving and resisting side independently. Manual Mode - NOT RECOMMENDED - Works ONLY with NL Analysis The Manual is used only for Non-Linear analysis and it is recommended ONLY for cases like very rough surfaces, where the wedge analysis fails to find suitable Ka/Kp values. There you could make totally horizontal surfaces, apply 0 wall friction etc, and let the software use the user-defined Ka Kp from the soils dialog. You can find more information in the following article/video: https://www.deepex.com/training/examples/advanced-video-examples/lateral-earth-coefficients-soil-pressures-deepex
  • Can I add an external surcharge in my DeepEX model?
    In DeepEX software, we can add a series of external surcharges on the model area, in order to simulate any potential traffic loads, construction loads, adjacent structures and more that can affect our excavation site. External loads can graphically be added in the model area, using the draw loads tools provided in the General tab of DeepEX. Adds a surface surcharge (define the start and end point of the surcharge). Adds a surface line load (click a surface point to add a point load). Adds a surcharge on the wall (define two wall points to add a surcharge). Adds a line load on the wall (define a wall point to add a wall point load) Adds a prescribed condition at a wall (click on the wall to add a prescribed condition). A prescribed condition is a predefined displacement or wall rotation (non-linear analysis) Adds a footing load (3D) (define a point where to install a footing load). Creates a new building (define a point where to install a building). Adds a 3D surface load (click on it and draw a 3D load in the Plan view screen). Click to manage the elastic load options (see paragraph 4.8). Edit load combinations. Load combinations are user defined combinations where a load can be selected manually if it is favorable or unfavorable. Assign a load combination. With this option, a load combination can be assigned to a specific design section.
  • How can i apply an axial load on a wall & calculate the axial capacity?
    A. Adding an Axial Load You can add a Linear Load on the wall and define the Pz component (vertical load magnitude): B. Calculating Axial Load Diagrams In the Design tab of the software, you need to select the option "Include axial load on wall" (else the axial load will not be examined). C. Defining Geotechnical Capacity Options: In the Stability+ tab of the software, you can select the option "Calculate Axial Geotechnical Capacity". In the same area, you can also set the Pile Calculation Settings, Select the pile installation method and Edit the method options: D. Including Soil/Wall Skin Friction (for concrete walls) When we are using any type of concrete walls (secant/tangent piles, diaphragm walls, drilled soldier piles (covered with concrete) etc) and we wish to calculate the axial pile capacity, we also need to access the Bond tab in the Soil Types dialog and set the ultimate bond resistance value. E. Reviewing the Axial load and Axial Capacity Results When we have selected to include axial loads on the wall and we have used a vertical load (or a load with a vertical component), we can see the Axial load diagram in the Results tab of the software. In the same diagram we can also see the calculated design and ultimate geotechnical capacities (if we selected so from the Stability+ menu - See C above).
  • Can I include more than one wall types or wall sections in the same model?
    In DeepEX, the user can create several wall sections that can be assigned independently to any wall on the model area (in the same or different examined 2D sections) or to additional wall elements. The list of wall sections is global in the specific project file, meaning that the same or any sections from the list can be used in different walls of different design sections. This allows the user to check fast different alrernatives for the project surrounding walls, use different walls in different project locations, create composite models, as well as design in the same model a temporary excavation and the internal permanent walls. Figure: Wall sections in DeepEX
  • Can I design a braced excavation using DeepEX?
    DeepEX can design excavations braced with steel struts and rakers. User can define multiple strut levels, as well as the strut and waler sections. The 3D Frame analysis module of DeepEX can be used to simulate the full shaft with all bracing for each support level. Figure: Braced excavation in DeepEX – Design Section A braced excavation can be created either by using the DeepEX Model Wizard, or manually in the model area with the tools included in the General tab of DeepEX. If you create the model manually(model is manually created), then you have to include the following stages(the following stages need to be included): 1. Initial Stage: Define wall section properties, soil properties and stratigraphy. No excavation should be performed in the initial stage. 2. Excavation Stage: Excavate between the two walls to an elevation below the desired strut installation level. (Repeat for each support level) 3. Support Installation Stage: Draw a strut support, connecting the two walls. You can define the exact strut elevation on the wall, the exact spacing between the strut and the strut section properties. (Repeat for each support level) 4. Final Excavation Stage: In this stage you should excavate to the desired final excavation elevation.
  • Can I design a top-down excavation using DeepEX?
    DeepEX can be used for the design and analysis of top-down excavation systems, braced with concrete slabs. Basement and intermediate floor slabs can be added as supports and they can be designed with DeepEX. Figure: Top-down excavation with concrete slabs in DeepEX A top-down excavation can be created either by using the DeepEX Model Wizard , or manually in the model area with the tools included in the General tab of DeepEX. If model is manually created, then the following stages need to be included: 1. Initial Stage: Define wall section properties, soil properties and stratigraphy. No excavation should be performed in the initial stage. 2. Excavation Stage: Excavate between the two walls to an elevation below the desired slab installation level. (Repeat for each support level) 3. Support Installation Stage: Draw a slab support, connecting the two walls. You can define the exact slab elevation on the wall and the slab section properties. (Repeat for each support level) 4. Final Excavation Stage: In this stage you should excavate to the desired final excavation elevation.
  • How can i design a gravity retaining wall with DeepEX?
    DeepEX software can design gravity retaining walls of any shape. This option is available with the additional Gravity Wall module. User has the flexibility to create basic types of retaining walls such as full gravity or with stem. Flexural, reinforcement can be included where ever desired. A gravity wall can also be used as a pier or an abutment wall with piles. The use of gravity wall in the model can be defined in the “Edit wall data” dialog of DeepEX (Figure 1). When the Gravity wall module is activated, there appears the option “Use gravity wall section”. The “Edit wall data” dialog appears when user double-clicks on the wall in the Model area of DeepEX. Figure 1: The Edit wall data dialog with “Use gravity wall section” option. Then the following option is selected, user should press on the button Edit Section Data. This will cause the “Retaining wall data” dialog to appear (Figure 2). Here, the user can define the retaining wall dimensions and reinforcement. Figure 2: Retaining Wall Data Dialog Depending on the selected wall type on the left side of this dialog, several dimension properties are available to be defined (Table 1). The reference coordinate for a gravity wall is taken as the left most corner of the stem (or top of wall). This coordinate is defined from the main wall data dialog. Height - Total wall height (excluding the key if used) Base - Total base wall width Top width- Top of the wall width Dist. To top left corner - Distance to top left corner from the far left side of the wall Heel thick - Base thickness on the driving side Toe width - Distance from the end of the main wall body to the end of the wall toe Toe thick - Base thickness on the resisting side The following retaining wall types are available in DeepEX: Calculate Driving Pressures from edge of wall: In the default mode, stability safety factors are calculated from soil and other pressures directly acting on the driving wall sides. While this assumption gives very good, approximate results, in theory the driving horizontal pressures can be taken at the wall edge. By selecting this option, safety factors are calculated by pressures acting directly on a vertical wall edge that is defined from the left most base coordinate if pressures are driving from left to right or the right most coordinate if pressures are driving from right to left. If this option is selected, then driving soil pressures on this vertical edge are always taken as Active or At-rest. The reinforcement data table enables the use of reinforcing bars on each wall face. Please note that DeepEX does not account for development lengths and reinforcement bending. It is the final responsibility of the engineer to decide how reinforcement has to be bent, cut, or shaped for fabrication. DeepEX though will calculate and report all bending and shear capacities.
  • Can the wall section change along the wall depth?
    We can change the wall section with depth with the "Additional Wall Elements" tool of the software. This allows the user to actually draw an additional wall element that can be placed either along the main wall, or on the left or right side of the main wall. The additional wall elements can be used as main or slave walls: A. Double click on the wall, edit the wall section and create all the wall sections that you need to use in your model. B. Define the position, top elevation and depth of the main left wall. C. Press on the arrow next to the option Edit 1st wall of the General tab of DeepEX and select to Draw left wall element (see figure below). D. Draw an additional wall element below the main wall (click on 2 points). In the dialog that appears, define the wall section and position of the additional wall.
  • Can I design a circular shaft using DeepEX?
    DeepEX can design circular shafts, either cantilever, or supported by ring beams and cap beams. Figure: Circular excavation with cap beam and ring concrete support in DeepEX A circular shaft model can be created with the DeepEX Model Wizard. As shown on the instructions below: Open DeepEX Wizard and select the required unit system. Figure: Define model unit system Select the analysis method, and the desired classical earth and water pressures method. Figure: DeepEX Wizard – Welcome tab Select the project type and define the basic project properties (final excavation depth, wall length, circular shaft radius, tip of the wall elevation and water table). Figure: DeepEX Wizard – Dimensions tab Define the project soil properties and stratigraphy. Figure: DeepEX Wizard – Soil Layers tab Define the wall section properties. Figure: DeepEX Wizard – Wall Type tab Define supports (cap beam, liner walls, ring beam supports). Figure: DeepEX Wizard – Supports tab Define depth for each support level. Figure: DeepEX Wizard – Stages tab Define surcharges. Figure: DeepEX Wizard – Surcharges tab Define structural and geotechnical codes. Figure: DeepEX Wizard – Codes tab
  • Can I design a bin-type wall using DeepEX?
    DeepEX can design bin-type walls. The two main walls can be connected with tierods and user can choose to excavate outside the walls. Figure: Bin type wall design in DeepEX A bin-type can be created either by using the DeepEX Model Wizard, or manually in the model area with the tools included in the General tab of DeepEX. If the model is created manually, then the following stages need to be included: 1. Initial Stage: Define wall section properties, soil properties and stratigraphy. No excavation should be performed in the initial stage. 2. Excavation Stage: Excavate outside the two walls to an elevation below the desired tierod installation level. (Repeat for each support level) 3. Support Installation Stage: Draw a tierod, connecting the two walls. You can define the exact tierod elevation on the wall and the tierod section properties. (Repeat for each support level) 4. Final Excavation Stage: In this stage you should excavate to the desired final excavation elevation.
  • Can I design a cantilever excavation using DeepEX?
    DeepEX can design cantilever excavations. In Limit Equilibrium Analysis, user can select to use either the Free or the Fixed Earth Method for the cantilever calculations. Figure: Cantilever excavation in DeepEX
  • Can I design a dead-man wall using DeepEX?
    DeepEX can design dead-man wall systems. The software takes into consideration the earth and water pressures, the external loads, as well as the interaction between the two walls. Figure: Dead-man wall design in DeepEX A dead-man wall can be created either by using the DeepEX Model Wizard, or manually in the model area with the tools included in the General tab of DeepEX. When the model is manually created, then the following stages need to be included: 1. Initial Stage: Define wall section properties, soil properties and stratigraphy. No excavation should be performed in the initial stage. 2. Support Installation Stage: In this stage you should draw a ground anchor support (tierod), connecting the two walls. You can define the exact tierod elevation on the wall, the exact spacing between the tierods and the tieback section properties. 3. Backfill Stage: Backfill between the two walls up to the top of the wall elevation. 4. Final Excavation Stage: Excavate to the desired final excavation elevation.
  • Which wall types can I design using DeepEX?
    DeepEX software can design any common wall type in minutes. The user can select the preferred wall type and define fast the wall section properties (dimensions, reinforcement, materials). The following wall types are available: Soldier pile and lagging walls (supported by reinforced concrete piles, prestressed concrete piles, concrete piles with GFRP, H steel beams, steel pipes, steel channels, rectangular hollow steel sections, timber piles and more) Secant and Tangent pile walls (with steel reinforcement or steel sections) Sheet pile walls - Steel Sheets and Timber Sheet Piles Diaphragms (Slurry) walls - Reinforced Concrete Walls Soldier pile and tremied concrete walls (SPTC) Combined sheet pile walls (I beams or pipes combined with sheet piles) Box sheet pile walls Custom walls, that can be used to simulate any other wall type. Figure: Wall types in DeepEX
  • Can DeepEX perform lagging calculations for soldier pile walls?
    The lagging is not included in the wall analysis - it is used to transfer the loads on each pile and then the software does the full design of the piles. DeepEX estimates the lagging loads and does some basic lagging checks. Typically the lagging is a simply supported beam, but the load can be modified within the program. The default is uniform, but is can be reduced or converted from uniform to other: After the analysis, in the Analysis and Checking summary table that appears, you can select to display the "One Design Section" from the list on the left, select your design section and select to review the Lagging Estimation: The end user needs to select to include in the report the related available report section, so these checks are reported:
  • Pressure widths in the wall sections dialog
    Wall Section Parameters for each wall case: A. Horizontal Spacing S This is the distance taken into consideration in the calculations. It is important, because it is used to divide the calculated moments, shears etc, presenting the results per foot (or per meter) of the wall. A.1. Continuous walls (concrete diaphragms - slurry walls , sheet piles): It is recommended to use as spacing 1ft (or 1m). A.2. Continuous walls (secant piles): The spacing is the center-to-center distance between the reinforced piles. A.3. Continuous walls (tangent piles): The spacing is the center-to-center distance between every pile. A.4. Non-Continuous walls (soldier piles - combined sheet piles): The spacing is the center-to-center distance between every pile. B. Width D This parameter is the actual wall width (thickness). B.1. Continuous walls (concrete diaphragms - slurry walls): The width is the concrete section thickness (defined by the end user). B.2. Continuous walls (Sheet piles): The width is the equivalent wall thickness (defined automatically by the selected steel-section, only graphical). B.3. Secant - Tangent piles - Soldier pile wall supported by reinforced concrete piles: The width is the diameter of each pile (defined by the end user). B.4. Soldier pile wall supported by steel sections - Combined sheet pile walls: By default, the steel sections are considered driven, and the Width value is defined as the maximum section dimension of the selected steel beam section (Flange - Web), or the steel pipe diameter. If we will to use steel sections in drilled holes below the excavation with concrete cover, then we can manually change the width D, to define the hole diameter. C. Active and Water width This is the width for the calculation of the active and water pressures below the excavation where there is no lagging (for soldier pile walls). C.1. Continuous walls (diaphragms, sheet piles, secant/tangent piles): It is recommended to use the wall Spacing (as defined above). C.2. Non-Continuous walls (soldier piles, combined sheet piles): It is recommended to use the Width value (as defined above). D. Passive width This is the width for the calculation of the passive pressures below the excavation where there is no lagging (for soldier pile walls). D.1. Continuous walls (diaphragms, sheet piles, secant/tangent piles): It is recommended to use the wall Spacing (as defined above). D.2. Non-Continuous walls (soldier piles, combined sheet piles): It is recommended to use 2.5 to 3 times the Width value (as defined above). This value (2.5 or 3*D) is limited by the defined Spacing, so if 2.5*D > Spacing, use the Spacing. Combined Sheet Pile Walls The combined sheet pile walls (king piles) are a combination of steel sections (H piles or pipes), with sheet piles that are used as lagging. Default - Continuous Wall In DeepEX, the sheet piles extend up to the pile tip elevation by default, so the wall is considered to be a continuous wall along the full wall depth. The pile tip elevation (bottom of the wall) is calculated automatically, since we defile the wall top elevation and the total wall depth. In that case, we need to specify the wall spacing and thickness as defined above in A.4 and B.4, and then we have to use the Spacing value to all active, passive and water widths). Non-Continuous Wall If we wish to stop the sheet pile sections to a specific elevation, higher than the pile tip elevation, we have to make the following changes: 1. For the active, water and passive widths below the excavation, we have to use the pile width as defined in C.2 and D.2 above. 2. The Custom Elev. Value in the Edit Wall dialog (appears when we double-click on a wall), is the elevation until which the sheet piles are extended. Below this elevation, the active, passive and water widths will be used as defined in (1) right above.
  • Can DeepEX optimize the wall length?
    The software provides two options for the wall embedment optimization in Limit Equilibrium Analysis: A. Define the wall depth manually and check the calculated wall embedment safety factors. After the analysis is performed, the Analysis summary table appears. There wecan review the most critical results among all stages. We have to make sure that all 3 wall embedment factors (length, passive, rotational) are above a limit (typically this could be 1 , 1.2, 1.3, 1.5 depending how you design). After we close this summary table, we can still open the Wall Embedment FS results in the results tab of DeepEX for each stage: B. Automatic wall embedment software optimization use: When using the Limit Equilibrium Method (LEM), the wall length can be optimized based on the wall embedment safety factors. This option can be located at the Design Tab of DeepEX and it is available only when LEM analysis is selected. There, the required safety factor can be defined for the cantilever stage and for the supported excavation stages. The software will change the wall length to achieve the wanted wall embedment FS.
  • Can DeepEX optimize the wall section?
    DeepEX offers optimization tools that can help the user to optimize the wall and support sections. Though, the user should select the original wall type and run the analysis. The software keeps the wall type and proposes wall sections that offer enough structural capacity. The user can select the ideal section from lists of suitable sections presented by the software. Figure: Optimization tools of DeepEX Figure: Option to optimize the wall section in DeepEX Figure: Proposed steel beam sections from wall section optimization
  • Which structural codes do you include in DeepFND and HelixPile?
    The following interational structural design codes are implemented in our software and allow the design of any pile structural section (Steel, Concrete, Timber Sections): ACI 318-11 and 318-19 (Reinforced Concrere Members) ASD 1989 (Allowable Stress Design - Steel Members) AASHTO LRFD 13th Edition (Steel Members) AISC 360 and 360-Allowable (2010 and 2016) Australian Standards (AS 3600, AS/NZS 4100) EUROCODE 2, 3 and 8 Specifications - Several national annexes are implemented
  • What is the difference between DeepFND and HelixPile?
    DeepFND and HelixPile are two similar, powerful software programs for the design and evaluation pile foundations. The programs can perform structural and geotechnical, lateral, and axial analysis of any foundation pile (single piles, pile groups and pile rafts). The only difference between the two programs is the available pile types. DeepFND can design all pile sections and pile types (helical and non-helical – drilled, driven, caissons, micropiles, CFA piles and more), whereas HelixPile can design only helical piles.
  • Which Geotechnical Codes - Load Combinations can i include in my model?
    DeepFND and HelixPile software programs implement the load combinations according to the following geotechnical codes: AASHTO LRFD 6, 8, 9, AASHTO 17, AASHTO GFRP-2 CALRANS LRFD PEN DOT AASHTO European Codes (DIN, BS, XP94, DM, DA) Chinese Standards (CN) Eurocode 7 Load Combinations
  • Does your program check the structural capacities of the piles as well?
    DeepFND and HelixPile software have implemented several structural codes used worldwide. The software do all calculations according to the selected standard and calculate the pile moment and shear capacities. All structural design checks and equations can be included in the software reports. Figure: Pile Moment, Shear and Displacement Diagrams - DeepFND
  • What type of Pile Analysis can your software do?
    Our foundation piles design software DeepFND and HelixPile can perform axial and lateral analysis of any pile type. The programs can calculate the pile shaft resistance and the bearing capacity of the piles, taking into consideration the pile installation method. In addition, the software can do lateral pile analysis, calculating the pile displacements, moment and shear diagrams for any applied load combination on the pile head.
  • What happens if my local country's codes are not implemented in your software?
    Our development team we can implement specific codes upon request. All we need from the client is a copy of the code recommendations in pdf format. Typically, the code implementation can be finished within some working days.
  • What pile types can i design with your software programs?
    DeepFND software can be used for the design of any foundation pile and support system. DeepFND implements all approved scientific methods for the design of deep foundation piles. With DeepFND we can design drilled piles, driven piles, CFA piles,caissons, drilled-in-displacement piles, micropiles and helical piles. Drilled Piles Driven Piles Drilled-In-Displacement Piles CFA Piles Micropiles Caissons Helical Piles On the other hand, both our foundation pile design software programs - DeepFND and HelixPile - can design helical piles (steel pipes, square solid and square hollow sections with helical plate configurations). Figure: Non-Helical Pile Types (DeepFND) Figure: Helical Pile Types (DeepFND and HelixPile)
  • Can your software design pile caps with a group of piles?
    Our foundation pile design software can design single foundation piles, pile groups and pile rafts. The following pile cap shapes are available: Rectangular Pile Caps Triangular Pile Caps Circular Pile Caps Hexagonal Pile Caps Octagonal Pile Caps User-Defined Perimeter Pile Caps Pile Rafts The user can create a concrete cap of any shape and define the pile configuration (pile locations and structural sections). The program can calculate the load that is transfered on each pile, considering the pile location and analyze all piles. Figure: A Rectangular Cap with Concrete Piles - DeepFND Figure: A Circular Cap with Helical Piles - DeepFND and HelixPile
  • How can I change the default Software parameters?
    In order to change the software default settings, the user account has to have admin rights in the device, since the default file is located in the pc program files. The procedure is to start the software as administrator, open the Settings dialog from the Help tab and press to set the current project as default. Please review the steps below: A. With the software closed, take the mouse over the software icon in your Desktop and RIGHT-CLICK on it. B. From the menu that appears, please select to run the software as administrator. C. Then, the Default settings dialog can be accessed in the Help tab of the software, perform the changes and select to set current project as Default. This will change the default file that is loaded when the software normally opens.
  • How can I change the default Software parameters?
    In order to change the software default settings, the user account has to have admin rights in the device, since the default file is located in the pc program files. The procedure is to start the software as administrator, open the Settings dialog from the Help tab and press to set the current project as default. Please review the steps below: A. With the software closed, take the mouse over the software icon in your Desktop and RIGHT-CLICK on it. B. From the menu that appears, please select to run the software as administrator. C. Then, the Default settings dialog can be accessed in the Help tab of the software, perform the changes and select to set current project as Default. This will change the default file that is loaded when the software normally opens.
  • Which Geotechnical Codes - Load Combinations can i include in my model?
    DeepFND and HelixPile software programs implement the load combinations according to the following geotechnical codes: AASHTO LRFD 6, 8, 9, AASHTO 17, AASHTO GFRP-2 CALRANS LRFD PEN DOT AASHTO European Codes (DIN, BS, XP94, DM, DA) Chinese Standards (CN) Eurocode 7 Load Combinations
  • What pile types can i design with your software programs?
    DeepFND software can be used for the design of any foundation pile and support system. DeepFND implements all approved scientific methods for the design of deep foundation piles. With DeepFND we can design drilled piles, driven piles, CFA piles,caissons, drilled-in-displacement piles, micropiles and helical piles. Drilled Piles Driven Piles Drilled-In-Displacement Piles CFA Piles Micropiles Caissons Helical Piles On the other hand, both our foundation pile design software programs - DeepFND and HelixPile - can design helical piles (steel pipes, square solid and square hollow sections with helical plate configurations). Figure: Non-Helical Pile Types (DeepFND) Figure: Helical Pile Types (DeepFND and HelixPile)
  • Which structural codes do you include in DeepFND and HelixPile?
    The following interational structural design codes are implemented in our software and allow the design of any pile structural section (Steel, Concrete, Timber Sections): ACI 318-11 and 318-19 (Reinforced Concrere Members) ASD 1989 (Allowable Stress Design - Steel Members) AASHTO LRFD 13th Edition (Steel Members) AISC 360 and 360-Allowable (2010 and 2016) Australian Standards (AS 3600, AS/NZS 4100) EUROCODE 2, 3 and 8 Specifications - Several national annexes are implemented
  • What happens if my local country's codes are not implemented in your software?
    Our development team we can implement specific codes upon request. All we need from the client is a copy of the code recommendations in pdf format. Typically, the code implementation can be finished within some working days.

3

DEEPEX

MAIN DEEP EX QUESTIONS

2

GENERAL

Deep FND FREQUENTLY ASKED QUESTIONS

  • INTERFAZ INTERACTIVA SUPERIOR
    SnailPlus es un software extremadamente amigable, que ofrece una interfaz de modelo interactiva. En el área del modelo podemos crear todas las etapas y definir todos los parámetros del proyecto (cargas externas, secciones de clavos de suelo, secciones de hormigón proyectado, etc.) gráficamente. Todos los elementos en el área del modelo (sondeo, clavos de suelo, revestimiento) pueden ser accedidos y sus propiedades pueden ser definidas a través de diálogos amigables para el usuario.
  • EXPORTAR INFORMES EN PDF Y MS WORD
    Los informes de SnailPlus pueden incluir tablas y gráficos con todas las propiedades del modelo examinadas y los resultados calculados. También podemos optar por incluir en el informe todas las ecuaciones de diseño estructural y el procedimiento de cálculo. Los informes de SnailPlus se pueden previsualizar, exportar en formato PDF o exportar en formato Word, para que puedan ser editados posteriormente por el usuario. Seleccionar Secciones de Diseño para el Informe Seleccionar Etapas de Construcción para el Informe Personalizar los Gráficos del Informe Definir la Distribución del Informe Definir las Secciones del Informe Posibilidad de Incluir Ecuaciones y Cálculos de Etapa en el Informe Previsualizar el Informe Exportar Informes en Formatos PDF y Word
  • PROPIEDADES DEL SUELO - REGISTROS SPT - REGISTROS CPT
    Los tipos de suelo, las propiedades del suelo y las estratigrafías pueden definirse fácilmente en SnailPlus mediante diálogos amigables para el usuario. En SnailPlus podemos crear una lista ilimitada de suelos y definir todas las propiedades del suelo rápidamente. El software proporciona varias herramientas de estimación (Estimador SPT y herramientas de estimación parcial para cada propiedad utilizando métodos y ecuaciones científicas). En SnailPlus podemos agregar directamente Registros SPT y Registros CPT, que pueden ser utilizados desde el software para estimar diversas propiedades del suelo. Definir lista de tipos de suelo Definir lista de estratigrafías (sondeos) Herramientas de estimación de propiedades del suelo Registros SPT Registros CPT
  • Modelo Wizard -Cree un modelo en segundos
    Modelo Wizard de SnailPlus se puede utilizar para crear cualquier superficie inclinada con todas las etapas de construcción, excavaciones e instalación de clavos de suelo y revestimientos en minutos. Podemos usar las pestañas del asistente para definir todos los parámetros del proyecto (parámetros de la superficie inclinada, clavos de suelo - placas de cabeza y secciones estructurales de hormigón proyectado, opciones de etapa y estándares de diseño). El Asistente crea el modelo automáticamente, ahorrándonos mucho tiempo y esfuerzo para la creación inicial.
  • CÓDIGOS DE DISEÑO ESTRUCTURAL Y GEOTÉCNICO
    HelixPile ha implementado muchos códigos y estándares internacionales de diseño para el diseño y análisis (estructural y geotécnico) de los pilotes helicoidales. En HelixPile podemos realizar un diseño de servicio o con factores utilizando normas de EE.UU. y Europa. Podemos seleccionar y cambiar fácilmente entre varios códigos estructurales de EE.UU., Europa, Australia y China. ACI 318-11 (Miembros de Hormigón Armado) ASD 1989 (Diseño por Esfuerzos Admisibles - Miembros de Acero) AASHTO LRFD 13ª Edición (Miembros de Acero) AISC 360 y 360-Admisible (2010 y 2016) Especificaciones EUROCODE 2, 7 y 8 Combinaciones de Cargas de AASHTO LRFD Códigos Europeos (DIN, BS, XP94, DM, DA) Normas Australianas (AS 3600, AS/NZS 4100) Normas Chinas (CN)
  • GRUPOS DE PILOTES - LOSAS SOBRE PILOTES
    HelixPile puede diseñar tanto Pilotes Helicoidales Individuales como Grupos de Pilotes con múltiples pilotes (se requiere el módulo opcional adicional Grupos de Pilotes). El software también puede diseñar Balsas de Pilotes, considerando el efecto combinado del suelo bajo la balsa (módulo adicional a nuestra opción de Grupo de Pilotes). Pilotes Helicoidales Individuales Tapas de Pilotes Rectangulares Tapas de Pilotes Triangulares Tapas de Pilotes Circulares Tapas de Pilotes Hexagonales Tapas de Pilotes Octagonales Tapas de Pilotes con Perímetro Definido por el Usuario Balsas de Pilotes
  • TIPOS DE PILOTES Y CONFIGURACIONES DE HÉLICE
    HelixPile puede realizar un diseño completo tanto vertical como lateral de pilotes helicoidales. Los pilotes helicoidales en HelixPile pueden ser de cualquier forma típica (tubos, secciones cuadradas sólidas y secciones cuadradas huecas). En cada pilote podemos definir y asignar un número ilimitado de configuraciones de hélice. Los pilotes pueden ser inyectados. Finalmente, podemos usar una carcasa externa en la cabeza del pilote, aumentando la capacidad lateral del pilote. Tubos de acero Secciones cuadradas sólidas de acero Secciones cuadradas huecas de acero Configuraciones de hélice ilimitadas por pilote Pilotes inyectados Uso de carcasa de acero externa
  • ANÁLISIS AXIAL Y LATERAL DE PILOTES
    HelixPile puede realizar análisis tanto verticales como laterales de pilotes. HelixPile utiliza tanto los métodos de la placa individual como del cilindro, reportando los resultados más críticos. Se pueden seleccionar las ecuaciones generales y las de Helicap. Para el diseño de pilotes verticales, podemos optar por utilizar el método de Vesic o el de Meyerhoff-Hansen. HelixPile calcula y verifica el torque de instalación de los pilotes helicoidales. Para el análisis lateral de pilotes, HelixPile puede usar la carga definida en la cabeza del pilote y calcular los diagramas de momento desarrollado, cortante y desplazamiento del pilote, o puede realizar un análisis de empuje, calculando y presentando la carga lateral requerida para alcanzar un desplazamiento especificado de la cabeza del pilote. HelixPile puede realizar análisis de asentamiento. En el software podemos seleccionar uno de los criterios de aceptación de pilotes implementados, o definir nuestro propio criterio.
  • INTERFAZ INTERACTIVA SUPERIOR
    HelixPile es un software extremadamente fácil de usar, que ofrece una interfaz de modelo interactiva. En el área del modelo podemos crear diferentes etapas de carga y definir todos los parámetros del proyecto (cargas externas en la cabeza del pilote, propiedades de la sección del pilote, etc.) gráficamente. Todos los elementos en el área del modelo (perforación, pilote, cargas externas) pueden ser accedidos y sus propiedades pueden ser definidas a través de diálogos amigables.
  • INFORMES EXPORTADOS EN PDF Y WORD
    HelixPile puede generar extensos informes para todas las secciones de diseño examinadas (pilotes) y etapas de carga. Los informes en HelixPile son totalmente personalizables: el usuario final siempre puede seleccionar todas las secciones del informe incluidas en el informe final. Los informes de HelixPile pueden incluir tablas y gráficos con todas las propiedades del modelo examinado y los resultados calculados. También podemos optar por incluir en el informe todas las ecuaciones de diseño estructural y el procedimiento de cálculo. Los informes de HelixPile pueden ser previsualizados, exportados a formato PDF o Word, de modo que pueden ser editados posteriormente por el usuario. Seleccione secciones de diseño para informar Seleccione etapas de construcción para informar Personalice los gráficos del informe Defina el diseño del informe Defina las secciones del informe Posibilidad de informar ecuaciones y cálculos de etapas Vista previa del informe Exportar informes en formatos PDF y Word
  • GENERACIÓN Y OPTIMIZACIÓN AUTOMÁTICA DE MODELOS DE AUTOMÓVILES
    El Asistente de Modelo de HelixPile puede usarse para crear cualquier modelo de fundación profunda en minutos. Podemos usar las pestañas del asistente para definir todos los parámetros del proyecto (configuraciones de análisis, tipo de pilote y sección estructural, cargas externas y normas de diseño). El asistente crea automáticamente el modelo, ahorrándonos mucho tiempo y esfuerzo en la creación inicial. HelixPile cuenta con una herramienta de optimización automática de longitud. El software puede usar un paso definido para aumentar la profundidad del pilote hasta un límite de profundidad definido, calculando la capacidad de tensión y compresión axial en cada paso.
  • PROPIEDADES DEL SUELO - REGISTROS SPT - REGISTROS CPT
    Los tipos de suelos, propiedades de suelos y estratigrafías pueden ser fácilmente definidos en HelixPile a través de diálogos amigables. En HelixPile podemos crear una lista ilimitada de suelos y definir rápidamente todas las propiedades del suelo. El software proporciona varias herramientas de estimación (Estimador SPT y herramientas de estimación parcial para cada propiedad usando métodos y ecuaciones científicas). En HelixPile podemos añadir directamente Registros SPT y Registros CPT, que pueden ser utilizados por el software para estimar diversas propiedades del suelo. Definir lista de tipos de suelo Definir lista de estratigrafías (perforaciones) Herramientas de estimación de propiedades del suelo Registros SPT Registros CPT
  • TIPOS DE MURO MÚLTIPLES
    El software QuayWalls puede diseñar cualquier tipo de sección de muro de muelle de gravedad, calculando las presiones del suelo, agua, olas y sísmicas sobre el sistema de muro. QuayWalls se puede utilizar para el diseño y análisis de: Muros cantiléver Muros segmentados Muros de cajón de caja con zonas de relleno de suelo Muros en forma de T Muros definidos por el usuario
  • PRESIONES DE OLAS Y REBASE
    QuayWalls puede calcular las presiones de las olas utilizando varios métodos establecidos. Las alturas iniciales de las olas y las longitudes de onda se pueden estimar con recomendaciones implementadas, o definidas manualmente por el usuario a través de un diálogo amigable. Finalmente, QuayWalls puede estimar automáticamente las tasas de flujo de rebase, ya que puede realizar cálculos de volumen de rebase promedio utilizando las ecuaciones de PROVERBS. Goda SainFlou Manual de Ingeniería Costera 2011 Allsop PROVERBS
  • ANÁLISIS DE ESTABILIDAD DE TALUDES Y DISEÑO DE CLAVOS DE SUELO
    SnailPlus global stability of slope surfaces (simple or reinforced with soil nails). SnailPlus can calculate and report the most critical slope surface and the slope stability safety factor with the use of several scientific methods. Soil nails can be used in the slope surfaces. SnailPlus calculates the effects of the soil nails to the slope stability analysis. Método de Bishop Método Morgenstern-Price (Equilibrio Límite General) Método de Spencer Normas francesas Clouterre para el diseño de clavos de suelo
  • DISEÑO COMPLETO DEL REVESTIMIENTO DE SHOTCRETE
    SnailPlus puede diseñar el revestimiento de shotcrete. También se pueden definir y analizar revestimientos de dos etapas (temporales y permanentes) con el software. SnailPlus realiza verificaciones en las placas de cabeza de los clavos de suelo. Diseño del revestimiento de shotcrete Revestimiento de dos etapas disponible Verificaciones de placas de cabeza
  • CÓDIGOS DE DISEÑO Y ESPECIFICACIONES
    SnailPlus ha implementado diversos estándares y especificaciones para el diseño de clavos de suelo y revestimientos de shotcrete. En SnailPlus podemos seleccionar especificaciones de ACI y FHWA para el diseño estructural. En el software podemos utilizar métodos de Estado Límite de Servicio o Estado Límite Último. Método Directo ACI Métodos FHWA y FHWA LRFD LRFD WSDOT 2019 (GDM) Factores de seguridad ASD LRFD FHWA GEC-7 EUROCODE 7 - Enfoque ULS
  • OPCIONES DE BÚSQUEDA DE SUPERFICIES DE TALUD MÚLTIPLES
    SnailPlus puede localizar e informar sobre la superficie de talud más crítica utilizando diversos métodos de búsqueda de superficies de talud: Superficies de Talud Circulares Superficies Circulares con Cuñas Activas y/o Pasivas Método Automático de Búsqueda de Superficies Métodos de Búsqueda de Superficies Trilineales Superficies con falla tipo bloque Superficies de Talud Definidas por el Usuario
  • What is the difference between DeepFND and HelixPile?
    DeepFND and HelixPile are two similar, powerful software programs for the design and evaluation pile foundations. The programs can perform structural and geotechnical, lateral, and axial analysis of any foundation pile (single piles, pile groups and pile rafts).The only difference between the two programs is the available pile types. DeepFND can design all pile sections and pile types (helical and non-helical – drilled, driven, caissons, micropiles, CFA piles and more), whereas HelixPile can design only helical piles.
  • Does your program check the structural capacities of the piles as well?
    DeepFND and HelixPile software have implemented several structural codes used worldwide. The software do all calculations according to the selected standard and calculate the pile moment and shear capacities. All structural design checks and equations can be included in the software reports. Figure: Pile Moment, Shear and Displacement Diagrams - DeepFND
  • Can your software design pile caps with a group of piles?
    Our foundation pile design software can design single foundation piles, pile groups and pile rafts. The following pile cap shapes are available: Rectangular Pile Caps Triangular Pile Caps Circular Pile Caps Hexagonal Pile Caps Octagonal Pile Caps User-Defined Perimeter Pile Caps Pile Rafts The user can create a concrete cap of any shape and define the pile configuration (pile locations and structural sections). The program can calculate the load that is transfered on each pile, considering the pile location and analyze all piles. Figure: A Rectangular Cap with Concrete Piles - DeepFND Figure: A Circular Cap with Helical Piles - DeepFND and HelixPile
  • What type of Pile Analysis can your software do?
    Our foundation piles design software DeepFND and HelixPile can perform axial and lateral analysis of any pile type. The programs can calculate the pile shaft resistance and the bearing capacity of the piles, taking into consideration the pile installation method. In addition, the software can do lateral pile analysis, calculating the pile displacements, moment and shear diagrams for any applied load combination on the pile head.
  • How is the pile cap modelled, rigid or finite stiffness?
    The pile cap is modelled with quadrilateral shell finite elements. The user can post process stress resultants and displacement of the cap.
  • What type of loads can i add on a single pile?
    In DeepFND and HelixPile software, we can add axial loads, lateral loads and external moments on both directions on each single pile head. In addition, we can add a distrubuted lateral load along the pile (user-defined elevations and magnitude). The following list summarizes the loads that can be applied on each axis. - Axial Loads (Z Axis) In DeepFND and HelixPile we can add axial loads on the pile head. A positive axial load magnitude is a compression load (downwards) and a negative magnitude is a tension load (uplift). - Lateral Loads (X Axis) The X-Axis is along the screen. A positive magnitude is a left-to-right load, and a negative magnitude is a right-to-left load. - Lateral Loads (Y Axis) The Y-Axis is on the perpendicular direction of the screen. A positive magnitude is an inwards load, and a negative magnitude is an outwards load (from the screen to the user). - External Moments (X and Y Axis) The external moments on each direction can be defined for each stage. A positive moment magnitude is a counter-clockwise moment, a negative value is a closkwize moment.
  • Which structural section types can i use in DeepFND?
    DeepEX software can design any common pile type in minutes. The user can select the preferred pile type and define fast the wall section properties (dimensions, reinforcement, materials). The following pile types are available: Typical piles (drilled, driven, CFA, Caisons etc) can be of any typical shape (circular, square, hollow) reinforced concrete, structural steel or timber (wood). The pile can be normal or belled type. We can define composite pile sections and we can change the pile section along the pile depth. Helical piles in DeepFND can be of any typical shape (pipes, square solid and square hollow sections). In each pile we can define and assign and unlimited number of helix configurations. The piles can be grouted. Finally, we can use external casing on the pile head, increasing the pile lateral capacity. Helical piles (pipes, square solid or square hollow sections) Reinforced concrete piles (circular or square section) Prestressed Concrete & Sections with GFRP and CFRP Steel beams (H piles, pipes, channel sections) Belled type piles Timber piles (wood) Steel core piles Composite piles
  • Can i check a certain pile under different load combinations?
    In DeepFND and HelixPile software, the user can add construction stages in any foundation pile section model. The stages in our foundation pile design programs work as loading stages, we can access and define tha axial tension and compression loads, as well as, the lateral loads and external moments for different stages and the software will calculate the pile capacities for all load combinations. Figure: Pile Loading in different stages
  • How can i add a CPT log in your software?
    The user can create the file in excel and then export it as tab delimited. The file can be of .txt or .cor format. The files should follow a specific format - 1st row should be parameter names, second row should be the units, and then row by row (without the first column numbering), we need to include four specific columns as presented in the image below: After the cpt log import, the user needs to press on the "Process Data" button, so the rest of the properties are estimated:
  • Is it possible to view the Moment and shear and interaction diagrams used to calculate reinforcement?
    In DeepFND we can view the interaction diagrams for each concrete section. We can also view Moment and shear along the pile, with the capacity indicated with the red lines left and right of the M and Q diagrams. All diagrams, including the interaction diagrams can be included in the exported reports.
  • For a piled raft, how is the influence of the raft on the soil taken into account?
    When the raft option is enabled the soil beneath the cap is considered through a non-linear Winkler base (either elastoplastic or exponential plastic formulation based on user selection). Influence of the raft on the soil is taken into account through the automatic configuration of the free length of the internal piles based on the intersection between the pile influence regions. The soil enclosed within the free length region is considered to be moving along with the cap and piles , thus shear resistance contribution along the perimeter of the piles within the free length region is considered to be zero.
  • Can i create and save my own piles with helix configurations in DeepFND & HelixPile?
    DeepFND and HelixPile software programs can design any common helical pile shape (pipes, square solid and square hollow sections). We can easily select the section shape and define the section parameters (dimensions, material properties etc). On each created pile section, we can fast generate several helix configurations, by defining the number of helixes, the helix plate diameter and thickness, and the plate spacing. All the generated helix configurations can be saved on a partial database, unique for each generated pile. Later, we can simply access and assign one of the generated helix configurations to the pile. We can select to use an external casing on any helical pile, in order to increase the lateral pile capacity. We simply need to define the casing section and the length from the pile top, where the casing is placed. The generated helical pile sections can be saved in a folder in any local device, and they can be loaded in any software file. Finally, any pile in DeepFND and HelixPile can be grouted. For grouted piles, we need to define the grout diameter, and the part of the pile which is grouted.
  • What type of loads can i add on a pile cap?
    In DeepFND and in HelixPile, we can define several loads on a pile cap, as follows: A. Single load at the pile cap centroid This is the default option in the software Wizard. The user can automatically define the maximum axial load on the cap, the maximum lateral loads and external moments on each direction (X and Y axis), as well as the torsional moment that can be applied on the cap. B. Point Loads on User-Defined Locations This option allows the user to create load groups of point loads and define the load coordinates, as well as the magnitude of the axial load, and the lateral load and moment at every axis (X and Y). C. Area Loads on the Pile Cap This option allows the user to assign an area pressure load on the whole cap surface, or at user-defined locations. D. Linear Loads on the Pile Cap This option allows the user to assign linear loads between 2 user-defined points on the pile cap.
  • What in the Max Stress Check result i get in the summary table after the analysis?
    The maximum stress check result is the most critical of all structural and geotechnical checks. DeepFND calculates all and reports there the most critical one (biggest). In general, all checks in the program are (applied force/Capacity). So, Max Stress Check is the most critical of: 1. (Maximum Compression Load) / (Compression Capacity) (Geotechnical check) 2. (Maximum Tension Load) / (Tension Capacity) (Geotechnical check) 3. (Maximum plate reaction) / (Plate Ultimate Capacity) (Structural Check) 4. (Maximum Pile Moment) / (Pile Moment Capacity) (Structural Check)
  • How is the structural resistance determined?
    The structural capacity is calculated in accordance to the standards selected by the user and the nature of the section (concrete, steel, timber, composite etc). The user can define the structural section (concrete piles with internal reinforcing cage, steel casing, drivel steel beams with or without concrete covers, timber piles and then the software uses the corresponding design codes.
  • What theory is used for the lateral pile load analysis?
    The software uses P-Y curves to simulate the soil, while an Euler-Bernoulli beam (elastic or inelastic pile behaviour with distributed plasticity along the pile) is used for the pile. A full FEM analysis engine is currently under development and will be implemented in the DeepFND/HelixPile 2021 versions.
  • How does DeepFND consider the pile cap side lateral response (if the cap is inside the soil)?
    For the lateral resistance contribution of the cap there are 2 mechanisms that need to be included, (a) the passive resistance and (b) the bottom/side friction resistance of the pilecap. We have incorporated an automatic calculation of all the lateral springs of a pile cap. The constitutive laws of the pilecap lateral springs used in the software are illustrated bellow:
  • Is pile to pile interaction taken into account and how?
    The user has a number of options available for the consideration of the group interaction factors. The automatic approach corresponds to the methodology proposed in [1], however an extension has been implemented where influence between piles with different dimensions is taken into account.
  • GRUPOS DE PILOTES - LOSAS SOBRE PILOTES
    DeepFND puede diseñar tanto pilotes individuales como grupos de pilotes con múltiples pilotes (se requiere el módulo opcional adicional Grupos de Pilotes). El software también puede diseñar losas sobre pilotes, considerando el efecto combinado del suelo debajo de la losa (módulo adicional a nuestra opción de grupo de pilotes). Pilotes individuales Cabezas de pilotes rectangulares Cabezas de pilotes triangulares Cabezas de pilotes circulares Cabezas de pilotes hexagonales Cabezas de pilotes octogonales Cabezas de pilotes con perímetro definido por el usuario Losas sobre pilotes
  • CAPACIDAD GEOTÉCNICA - TIPOS DE PILAS
    DeepFND implementa todos los métodos científicos aprobados para el diseño de pilas de cimentación profunda. Con DeepFND podemos diseñar pilas perforadas, pilas hincadas, pilas CFA, cajones, pilas perforadas con desplazamiento, micropilotes y pilotes helicoidales. Pilas Perforadas Pilas Hincadas Pilas Perforadas con Desplazamiento Pilas CFA Micropilotes Cajones Pilotes Helicoidales Normas Implementadas: FHWA GEC8 & GEC 10 AASHTO Norlund AASHTO LRFD O’Neil y Reese FHWA 1999
  • DISEÑO ESTRUCTURAL
    DeepFND incorpora muchos códigos y normas de diseño internacionales para el diseño y análisis (estructural y geotécnico) de todos los tipos de pilotes de muro. En DeepFND podemos realizar un diseño de servicio o un diseño factorizado utilizando las normas de EE. UU. y Europa. Podemos seleccionar y cambiar fácilmente entre varios códigos estructurales de EE. UU., Europa, Australia y China. ACI 318-11 y 318-19 (Miembros de Hormigón Armado) ASD 1989 (Diseño de Esfuerzo Admisible - Miembros de Acero) AASHTO LRFD 13ª Edición (Miembros de Acero) - AISC 360 y 360 Allowable (2010 y 2016) Especificaciones de EUROCODE 2, 7 y 8 AASHTO LRFD 6ª, 8ª y 9ª - PEN DOT AASHTO Códigos Europeos (DIN, BS, XP94, DM, DA) Normas Australianas (AS 3600, AS/NZS 4100) Normas Chinas (CN) Código de Edificación de NYC Normas IBC 2015
  • ANÁLISIS AXIAL Y LATERAL DE PILOTES
    DeepFND realiza análisis de pilotes verticales y laterales e incluye varias ecuaciones de capacidad de carga. Recomendaciones sencillas le ayudan a seleccionar el método apropiado dependiendo del tipo de pilote y del método de instalación. Para pilotes regulares: DeepFND implementa múltiples normas de instalación de pilotes (FHWA GEC-8 y 10, AASHTO Norlund, IBC, Código de Edificación de NYC, AASHTO LRFD y más). Para pilotes helicoidales, el software utiliza tanto los métodos de placa individual como de cilindro, reportando el más crítico. Se pueden seleccionar las ecuaciones generales y Helicap. Para el diseño de pilotes verticales, podemos elegir usar ya sea el método de Vesic, o el método de Meyerhoff-Hansen. DeepFND calcula y verifica el torque de instalación de los pilotes helicoidales. Para el análisis lateral de pilotes, DeepFND puede usar la carga definida en la cabeza del pilote y calcular los diagramas de momento desarrollado, corte y desplazamiento del pilote, o puede realizar un análisis de empuje, calculando y presentando la carga lateral requerida para lograr un desplazamiento específico de la cabeza del pilote. DeepFND puede realizar análisis de asentamiento. En el software podemos seleccionar uno de los criterios de aceptación de pilotes implementados, o definir el nuestro.
  • PROPIEDADES DEL SUELO - REGISTROS SPT - REGISTROS CPT
    Los tipos de suelo, las propiedades del suelo y las estratigrafías se pueden definir fácilmente en DeepFND a través de diálogos amigables para el usuario. En DeepFND podemos crear una lista ilimitada de suelos y definir todas las propiedades del suelo rápidamente. El software proporciona varias herramientas de estimación (Estimador SPT y herramientas de estimación parcial para cada propiedad utilizando métodos científicos y ecuaciones). En DeepFND podemos añadir directamente registros SPT y registros CPT, que se pueden utilizar desde el software para estimar varias propiedades del suelo. Definir lista de tipos de suelo Definir lista de estratigrafías (sondeos) Herramientas de estimación de propiedades del suelo Registros SPT Registros CPT
  • INTERFAZ INTERACTIVA SUPERIOR
    DeepFND es un software extremadamente fácil de usar, que ofrece una interfaz de modelo interactiva. En el área del modelo podemos crear diferentes etapas de carga y definir todos los parámetros del proyecto (cargas externas en la cabeza del pilote, propiedades de la sección del pilote, etc.) gráficamente. Todos los elementos en el área del modelo (sondeo, pilote, cargas externas) se pueden acceder y sus propiedades se pueden definir a través de cuadros de diálogo fáciles de usar.
  • GENERACIÓN Y OPTIMIZACIÓN AUTOMÁTICA DE MODELOS DE AUTOMÓVILES
    El asistente de modelos DeepFND se puede utilizar para crear cualquier modelo de cimentación profunda en cuestión de minutos. Podemos utilizar las pestañas del asistente para definir todos los parámetros del proyecto (configuraciones de análisis, tipo de pilote y sección estructural, cargas externas y normas de diseño). El asistente crea el modelo automáticamente, lo que nos ahorra mucho tiempo y esfuerzo para la creación inicial. DeepFND cuenta con una herramienta de optimización automática de longitud. El software puede usar un paso definido para aumentar la profundidad de los pilotes hasta un límite de profundidad definido, calculando la capacidad de tensión y compresión axial en cada paso.
  • INFORMES EXPORTADOS EN PDF Y WORD
    DeepFND puede generar informes extensos para todas las secciones de diseño examinadas (pilotes) y etapas de carga. Los informes en HelixPile son totalmente personalizables: el usuario final siempre puede seleccionar todas las secciones del informe incluidas en el informe final. Los informes de DeepFND pueden incluir tablas y gráficos con todas las propiedades del modelo examinado y los resultados calculados. También podemos optar por incluir en el informe todas las ecuaciones de diseño estructural y el procedimiento de cálculo. Los informes de DeepFND se pueden previsualizar, exportar a formato PDF o exportar a formato Word, para que puedan ser editados posteriormente por el usuario. Seleccionar Secciones de Diseño para Informar Seleccionar Etapas de Construcción para Informar Personalizar Gráficos de Informes Definir el Diseño del Informe Definir las Secciones del Informe Posibilidad de Informar Ecuaciones y Cálculos de Etapas Previsualizar el Informe Exportar Informes en Formatos PDF y Word
  • Estructuras - Códigos y normativas geotécnicas
    Las excavaciones profundas requieren el cumplimiento tanto de normas estructurales como geotécnicas. Te cubrimos con numerosos códigos de diseño y normas internacionales para el diseño y análisis (estructural y geotécnico) de todos los tipos de muros y sistemas de soporte. Puedes realizar un diseño de servicio o factorizado con normas estadounidenses, europeas, australianas o chinas y seleccionar y cambiar fácilmente entre varios estándares de código: ACI 318 2019 (Miembros de hormigón armado) ASD 1989 (Diseño por Esfuerzos Permisibles - Miembros de acero) AASHTO LRFD 9ª Edición (Miembros de acero) AISC 360 y 360-Allowable (2010 y 2016) Especificaciones EUROCODIGO 2, 3, 7 y 8 Combinaciones de carga AASHTO LRFD 9ª Combinaciones de carga CALTRANS LRFD 2012 Combinaciones de carga PEN DOT AASHTO 2012 Códigos europeos (DIN, BS, XP94, DM, DA) BS 6349 Partes 1-2 (Estructuras marinas-Muros de muelle) Códigos canadienses (CSA, NR24-28-2018) Normas australianas (AS 3600, AS/NZS 4100) Normas chinas (CN)
  • MÉTODOS DE ANÁLISIS: LEM, No Lineal, FEM+
    DeepEX implementa todos los métodos científicos aprobados para el diseño de proyectos de excavación profunda. Realice fácilmente un análisis clásico de equilibrio límite, un método de análisis no lineal con resortes Winkler elastoplásticos (viga sobre cimientos elastoplásticos), o un análisis completo de elementos finitos. Un análisis de elementos finitos se puede realizar si agrega y activa nuestro motor de análisis de elementos finitos DeepFEM en cualquier versión de DeepEX: Método de Análisis de Equilibrio Límite (LEM) Método de Análisis No Lineal (NL) Método de Análisis de Elementos Finitos (FEM) - Análisis Combinado (LEM+NL) Análisis Combinado (LEM+FEM)
  • ANÁLISIS DE ELEMENTOS FINITOS 3D
    Genera, analiza y diseña modelos de excavación 3D a gran escala de manera transparente con nuestro potente motor de Análisis de Elementos Finitos 3D. Genera cualquier modelo FEM 3D en segundos con nuestros potentes asistentes Creación y edición de modelos paramétricos – accede y edita todos los elementos en el área del modelo en segundos Realiza FEM 3D considerando la interacción completa suelo-estructura Revisa los resultados en tablas para todas las paredes, puntales y soportes Realiza comprobaciones estructurales en todos los soportes y puntales Revisa las sombras FEM 3D para suelo, paredes y soportes en todas las etapas
  • SISTEMAS DE SOPORTE EN DEEPEX
    Realiza tanto el diseño estructural como geotécnico de muchos sistemas de soporte diferentes. Puedes añadir soportes gráficamente en el área del modelo y modificar fácilmente haciendo doble clic. Cambia fácilmente las secciones de soporte con una extensa base de datos de secciones de acero implementada. Excavaciones en Voladizo Excavaciones Ancladas (Anclajes, Anclajes Helicoidales) Excavaciones Apuntaladas (Pilares y Tirantes de Acero) Cofradías Pilares y Tableros Mecánicos e Hidráulicos Excavaciones de Arriba hacia Abajo (Losas de Concreto Armado) Excavaciones Escalonadas Losas de Concreto para Sótanos Amarres y Pilotes debajo de Losas de Base Pilotes de Cimentación para Estabilidad de Taludes Columnas de Acero Verticales Soportes Fijos y de Resorte Sistemas de Muro de Hombre Muerto Sistemas de Muro de Tipo Bin Excavaciones de Tipo Caja (Tableros de Acero o Concreto) Pozos Circulares
  • MUROS GRAVITACIONALES - MUROS MARINOS - APOYOS DE PILAS - MSE
    DeepEX permite el diseño de Muros de Contención Gravitacionales, Soportes de Pilas y Muros Marinos con los correspondientes módulos adicionales opcionales que pueden ser activados dentro del software. Módulo de Muros Gravitacionales: Permite el diseño de muros de contención gravitacionales de concreto armado de cualquier forma (muros continuos o pilares 3D), calculando los factores de seguridad de deslizamiento, carga y vuelco del muro. Módulo de Apoyos de Pilas: Permite el uso de pilotes de cimentación en secciones de muro gravitacional (creando apoyos de pilas) y cimentaciones de pilotes adyacentes al sitio de excavación. El módulo permite el cálculo de las fuerzas en cada pilote y el diseño lateral y vertical de los pilotes (cálculo de momentos de pilote, cortante y diagramas de desplazamiento, así como el cálculo de la capacidad de carga de los pilotes). Prerrequisito: Módulo de muros gravitacionales Módulo de Muros Marinos - Presiones de Oleaje - Sobrepaso: Permite el diseño de muros marinos, muros de bloques/segmentos con resistencias cortantes individuales y densidades, muros de cajones de muelle (3D) con relleno y más, el cálculo de las presiones del oleaje con Sainflou, McConnel, Proverbios, Combinaciones de carga para British Standards 6349 Partes 1-2 (Estructuras Marinas-Muros de Muelle) y más. Prerrequisito: Módulo de muros gravitacionales Módulo de MSE Muros - Refuerzos de Suelo: Permite el diseño de terraplenes con refuerzos de suelo (rejillas y tiras de acero, georedes, geotextiles) y columnas de piedra. Los refuerzos de suelo pueden ser utilizados para estabilizaciones de taludes. Prerrequisito: Módulo de muros gravitacionales
  • TIPOS DE PAREDES EN DEEPEX
    DeepEX puede ser utilizado para el diseño y análisis de todos los tipos de paredes comúnmente utilizados. Define las propiedades de la sección de la pared de manera eficiente a través de diálogos fáciles de usar y actualiza fácilmente las listas de materiales estructurales con materiales nuevos o estándar. Una extensa base de datos de refuerzo de barras de acero y secciones de acero te cubre para trabajar en cualquier parte del mundo. Paredes de Pilotes Militares y Encofrado Paredes de Tablestacas (Acero, Madera, Vinilo) Paredes de Pilotes Secantes - Paredes de Pilotes Tangentes Paredes de Diafragma de Concreto (Paredes de Lodo) Paredes Combinadas de Tablestacas (Sistema de Pila Rey - tablestaca) Tablestacas en Caja Paredes de Pilotes Militares y Concreto Vaciado con Tremie (Paredes SPTC) Paredes y Pilotes Pretensados y de GFRP
  • PROPIEDADES DEL SUELO - REGISTROS SPT - REGISTROS CPT
    Los tipos de suelos, las propiedades del suelo y las estratigrafías se pueden definir fácilmente en DeepEX a través de diálogos amigables para el usuario. Cree una lista ilimitada de tipos de suelo y defina rápidamente todas las propiedades del suelo. Estime rápidamente las propiedades del suelo con varias herramientas de estimación (SPT, Estimador CPT y otras herramientas con métodos y ecuaciones de estimación aceptadas por la industria). El módulo adicional, Informe de Estimación del Suelo y Análisis Estadístico, le permite realizar un análisis estadístico de los parámetros del suelo estimados con una amplia gama de métodos. El análisis estadístico nos permite estimar la variabilidad de las propiedades del suelo con la profundidad o en el plano del proyecto. Luego, puede seleccionar los valores de diseño deseados en función del nivel de confianza deseado. En DeepEX, podemos agregar directamente registros SPT y registros CPT, que pueden ser utilizados desde el software para estimar diversas propiedades del suelo.
  • ANÁLISIS DE LA ESTABILIDAD DE LA LADERA Y ANCLAJE DE SUELOS
    DeepEX implementa herramientas que pueden evaluar la estabilidad global de modelos de excavación y superficies de ladera (simples o reforzadas con anclajes de suelo). DeepEX puede calcular e informar sobre la superficie de ladera más crítica y el factor de seguridad de estabilidad de la ladera con el uso de varios métodos científicos. Los anclajes de suelo pueden ser utilizados en las superficies de ladera. DeepEX calcula los efectos de los anclajes de suelo en el análisis de estabilidad de la ladera. Método de Bishop Método de Morgenstern-Price (Equilibrio Límite General) Método de Spencer Método Sueco Ordinario (método de cortes) Normas francesas Clouterre para el diseño de anclajes de suelo
  • SECCIONES CORTADAS EN 2D Y MODELOS DE EXCAVACIÓN EN 3D
    Afronta desafíos de diseño adicionales con módulos DeepEX adicionales. No todas las excavaciones profundas requieren las mismas capacidades. Puedes ampliar las capacidades de tu solución con las siguientes versiones/módulos de DeepEX: DeepEX 2D: Para el diseño y optimización de todas las secciones de diseño de proyectos en 2D. DeepEX 3D: Exporta el modelo de marco 3D con todos los niveles de refuerzo, para que se pueda calcular el proyecto completo con todos los soportes. Con DeepEX 3D también podemos realizar una estimación del costo total para el proyecto completo. Se pueden añadir módulos adicionales en cualquiera de las versiones principales de DeepEX (2D y 3D), aumentando las capacidades del software: - Módulo de exportación de dibujos a DXF: Con este módulo todas las secciones 2D para todas las etapas de construcción y secciones de pared pueden ser exportadas a DXF y abiertas en cualquier software CAD. En DeepEX 3D, la misma característica puede ser utilizada para la exportación del plan completo del proyecto y vistas laterales. Módulo de conexión de acero: Permite generar fácilmente todas las conexiones de acero para walers a puntales y walers de esquina. Una vez completado el diseño, las conexiones de acero pueden ser optimizadas con un clic del botón. El programa ajustará automáticamente los tamaños de soldadura y aplicará refuerzos de placa si es necesario. Las conexiones de acero pueden evaluarse con AISC 360-16 permitido o LRFD. Módulo de exportación de modelo 3D y hologramas: Este módulo permite exportar el modelo de excavación profunda a un escritorio 3D, realidad virtual o modelo de realidad aumentada (HoloLens). Visualiza fácilmente el modelo de excavación 3D antes de que se construya y comunica con tus clientes algunas de las complejidades y etapas de construcción. De esta manera, verifica los posibles desafíos de construcción (cimientos de edificios adyacentes, servicios públicos subterráneos, etc.), así como impresiona a los clientes con la vista del proyecto final antes de que se construya. El módulo permite importar edificios 3D de vuelta al entorno de diseño. Módulo de análisis de elementos finitos: DeepFEM, puede añadirse y activarse en cualquier versión del software, permitiendo que se realice el método de análisis de elementos finitos. El método FEM considera la interacción completa suelo-estructura y puede ser utilizado para analizar modelos complicados, pilas de fundaciones adyacentes, túneles y más.
  • SIMULACIÓN Y ANÁLISIS DE TÚNELES - SEM, TBM, CUBIERTA A CIELO ABIERTO
    Modela y analiza túneles TBM, NATM o de Caja con el método de Análisis de Elementos Finitos (Prerrequisitos: Módulo FEM). Los asistentes nos brindan la flexibilidad para crear fácilmente geometrías de túneles ovales y complejas. Las secciones y segmentos de túnel se pueden activar y desactivar en cualquier etapa. Las pérdidas de suelo y el inyectado de presión también pueden ser modelados con facilidad.
  • INFORMES EXPORTADOS EN PDF Y WORD
    DeepEX puede generar informes extensos para todas las secciones de diseño y etapas de construcción examinadas. Los informes en DeepEX son totalmente personalizables: el usuario final siempre puede seleccionar todas las secciones del informe incluidas en el informe final. Los informes de DeepEX pueden incluir tablas y gráficos con todas las propiedades del modelo examinadas y los resultados calculados. También podemos optar por incluir en el informe todas las ecuaciones de diseño estructural y el procedimiento de cálculo. Los informes de DeepEX se pueden previsualizar, exportar a formato PDF o exportar a formato Word, para que puedan ser editados posteriormente por el usuario. Seleccionar Secciones de Diseño para Informar Seleccionar Etapas de Construcción para Informar Personalizar los Gráficos del Informe Definir la Disposición del Informe Definir las Secciones del Informe Posibilidad de Informar Ecuaciones y Cálculos de Etapas Resultados de Estimación de Costos Resultados de Marcos en 2D y 3D Previsualizar el Informe Exportar Informes en formatos PDF y Word
  • INTERFAZ DE SOFTWARE Y CONTROL POR VOZ
    DeepEX ofrece un software extremadamente fácil de usar con una interfaz de modelo interactivo. Puede dibujar soportes, cargas y elementos en el área del modelo para cada etapa de construcción, y realizar gráficamente excavaciones, rellenos y operaciones de desagüe. Todos los elementos en el área del modelo (muros, soportes, nodos superficiales, cargas externas) se pueden acceder con el ratón y sus propiedades pueden cambiarse en cualquier momento mediante diálogos amigables. Genere rápidamente modelos con un asistente poderoso. Finalmente, puede hablar con DeepEX y decirle que prepare un modelo de excavación profunda "Hey DeepEX..." "Crea una excavación de 10 metros de profundidad con puntales".
  • SECCIONES DE DISEÑO MÚLTIPLES Y ETAPAS DE CONSTRUCCIÓN
    Todo su diseño puede estar en un solo archivo. Puede crear un número ilimitado de secciones de diseño en el mismo archivo, simulando todas las secciones de pared del proyecto y diferentes profundidades de excavación. En cada sección de diseño, se pueden definir diferentes parámetros del suelo y estratigrafías, secciones de pared, sistemas de soporte y suposiciones de diseño. Cree un número ilimitado de etapas de construcción, simulando los procedimientos de diseño completos o las condiciones en cada sección de diseño. DeepEX presenta resultados extensos para cada etapa, ayudando a identificar la condición más crítica. Examine fácilmente alternativas dentro de diferentes secciones de diseño. Esto le permite identificar rápidamente la solución de excavación profunda más crítica o más eficiente.
  • Question goes here?
    Answer goes here lorem ipsum dolor sit amet, consectetur adipiscing elit. Aenean finibus commodo nulla. Ut ut accumsan diam, dignissim ultrices turpis. Sed quis bibendum tortor. Ut eu pulvinar augue. Vestibulum at ante risus. Nunc rutrum ante lorem, in fringilla velit porttitor quis. Etiam vulputate mi vel lectus egestas, vel varius purus tempor. Donec neque massa, vestibulum id leo ut, suscipit hendrerit felis. Maecenas sollicitudin libero eu dui bibendum molestie. Etiam sit amet interdum nunc. Curabitur ac consectetur mi. Proin ac posuere est. Duis tincidunt vehicula pellentesque. Suspendisse diam lorem, ultricies in malesuada at, gravida non lorem. Nunc nec ipsum purus. Nullam fringilla, odio non vestibulum facilisis, mi eros blandit nisl, tincidunt maximus metus erat eu magna. Donec quis nisl vitae purus pellentesque rutrum sed vel leo. Donec sed sagittis arcu. Nulla et nunc luctus, laoreet elit vel, porttitor lacus.
  • Question goes here?
    Answer goes here lorem ipsum dolor sit amet, consectetur adipiscing elit. Aenean finibus commodo nulla. Ut ut accumsan diam, dignissim ultrices turpis. Sed quis bibendum tortor. Ut eu pulvinar augue. Vestibulum at ante risus. Nunc rutrum ante lorem, in fringilla velit porttitor quis. Etiam vulputate mi vel lectus egestas, vel varius purus tempor. Donec neque massa, vestibulum id leo ut, suscipit hendrerit felis. Maecenas sollicitudin libero eu dui bibendum molestie. Etiam sit amet interdum nunc. Curabitur ac consectetur mi. Proin ac posuere est. Duis tincidunt vehicula pellentesque. Suspendisse diam lorem, ultricies in malesuada at, gravida non lorem. Nunc nec ipsum purus. Nullam fringilla, odio non vestibulum facilisis, mi eros blandit nisl, tincidunt maximus metus erat eu magna. Donec quis nisl vitae purus pellentesque rutrum sed vel leo. Donec sed sagittis arcu. Nulla et nunc luctus, laoreet elit vel, porttitor lacus.
  • Question goes here?
    Answer goes here lorem ipsum dolor sit amet, consectetur adipiscing elit. Aenean finibus commodo nulla. Ut ut accumsan diam, dignissim ultrices turpis. Sed quis bibendum tortor. Ut eu pulvinar augue. Vestibulum at ante risus. Nunc rutrum ante lorem, in fringilla velit porttitor quis. Etiam vulputate mi vel lectus egestas, vel varius purus tempor. Donec neque massa, vestibulum id leo ut, suscipit hendrerit felis. Maecenas sollicitudin libero eu dui bibendum molestie. Etiam sit amet interdum nunc. Curabitur ac consectetur mi. Proin ac posuere est. Duis tincidunt vehicula pellentesque. Suspendisse diam lorem, ultricies in malesuada at, gravida non lorem. Nunc nec ipsum purus. Nullam fringilla, odio non vestibulum facilisis, mi eros blandit nisl, tincidunt maximus metus erat eu magna. Donec quis nisl vitae purus pellentesque rutrum sed vel leo. Donec sed sagittis arcu. Nulla et nunc luctus, laoreet elit vel, porttitor lacus.
  • Question goes here?
    Answer goes here lorem ipsum dolor sit amet, consectetur adipiscing elit. Aenean finibus commodo nulla. Ut ut accumsan diam, dignissim ultrices turpis. Sed quis bibendum tortor. Ut eu pulvinar augue. Vestibulum at ante risus. Nunc rutrum ante lorem, in fringilla velit porttitor quis. Etiam vulputate mi vel lectus egestas, vel varius purus tempor. Donec neque massa, vestibulum id leo ut, suscipit hendrerit felis. Maecenas sollicitudin libero eu dui bibendum molestie. Etiam sit amet interdum nunc. Curabitur ac consectetur mi. Proin ac posuere est. Duis tincidunt vehicula pellentesque. Suspendisse diam lorem, ultricies in malesuada at, gravida non lorem. Nunc nec ipsum purus. Nullam fringilla, odio non vestibulum facilisis, mi eros blandit nisl, tincidunt maximus metus erat eu magna. Donec quis nisl vitae purus pellentesque rutrum sed vel leo. Donec sed sagittis arcu. Nulla et nunc luctus, laoreet elit vel, porttitor lacus.
  • Question goes here?
    Answer goes here lorem ipsum dolor sit amet, consectetur adipiscing elit. Aenean finibus commodo nulla. Ut ut accumsan diam, dignissim ultrices turpis. Sed quis bibendum tortor. Ut eu pulvinar augue. Vestibulum at ante risus. Nunc rutrum ante lorem, in fringilla velit porttitor quis. Etiam vulputate mi vel lectus egestas, vel varius purus tempor. Donec neque massa, vestibulum id leo ut, suscipit hendrerit felis. Maecenas sollicitudin libero eu dui bibendum molestie. Etiam sit amet interdum nunc. Curabitur ac consectetur mi. Proin ac posuere est. Duis tincidunt vehicula pellentesque. Suspendisse diam lorem, ultricies in malesuada at, gravida non lorem. Nunc nec ipsum purus. Nullam fringilla, odio non vestibulum facilisis, mi eros blandit nisl, tincidunt maximus metus erat eu magna. Donec quis nisl vitae purus pellentesque rutrum sed vel leo. Donec sed sagittis arcu. Nulla et nunc luctus, laoreet elit vel, porttitor lacus.
  • Question goes here?
    Answer goes here lorem ipsum dolor sit amet, consectetur adipiscing elit. Aenean finibus commodo nulla. Ut ut accumsan diam, dignissim ultrices turpis. Sed quis bibendum tortor. Ut eu pulvinar augue. Vestibulum at ante risus. Nunc rutrum ante lorem, in fringilla velit porttitor quis. Etiam vulputate mi vel lectus egestas, vel varius purus tempor. Donec neque massa, vestibulum id leo ut, suscipit hendrerit felis. Maecenas sollicitudin libero eu dui bibendum molestie. Etiam sit amet interdum nunc. Curabitur ac consectetur mi. Proin ac posuere est. Duis tincidunt vehicula pellentesque. Suspendisse diam lorem, ultricies in malesuada at, gravida non lorem. Nunc nec ipsum purus. Nullam fringilla, odio non vestibulum facilisis, mi eros blandit nisl, tincidunt maximus metus erat eu magna. Donec quis nisl vitae purus pellentesque rutrum sed vel leo. Donec sed sagittis arcu. Nulla et nunc luctus, laoreet elit vel, porttitor lacus.
  • RCsolver Features and Capabilities
    - ACI-318, Eurocode 2, Eurocode 8 Specifications. - EC2 national annexes of more than 10 countries. - Superior interactive interface. - Design and evaluate concrete members in minutes. - Powerful options. - Time-saving design approach. - Design and Assessment modes. - Great for engineers, consultants, and contractors. - Quick evaluation of many alternatives. - Full presentation of all main and partial calculations. - Extensive verification and training examples. - Extensive theory manuals. - Great tool for the teaching and learning of concrete design. - Great tool for the quick estimation of existing reinforcement. - Detailed summary reports in word and pdf.
  • Gráficos personalizables
    Con SiteMaster, puedes generar informes temporales personalizables en cualquier profundidad del inclinómetro.
  • Tabla resumen
    SiteMaster compila una tabla resumen para todos los inclinómetros, que presenta el estado actual del proyecto.
  • Mapa del sitio
    Agregue el mapa del sitio directamente desde Google Maps, localice inclinómetros en un mapa y vea los contornos de desplazamiento.
  • Límites de advertencia
    SiteMaster te permite predefinir límites de advertencia de desplazamiento y velocidad. Cuando se excede un límite de advertencia, SiteMaster te advierte con el color de límite apropiado.
  • Escáner de lógica de suma de comprobación:
    SiteMaster examina las lecturas de sumas de comprobación, señalando posibles inconsistencias con colores fáciles de distinguir.
  • Opciones de corrección
    Las correcciones se pueden aplicar a un inclinómetro o a una lectura individual. Las opciones de corrección disponibles incluyen: a) Correcciones espirales b) Correcciones de base transpuesta c) Transposición de puntos a lo largo de la profundidad d) Correcciones rotacionales e) Correcciones de desplazamiento de sesgo f) Ajuste de la constante de la sonda para una lectura individual g) Desplazamientos vectoriales con profundidad
  • Sistema de datos inteligente
    SiteMaster cuenta con un sistema de gestión de datos inteligente y flexible. Los datos críticos se almacenan en archivos XML, y los datos se pueden ajustar fácilmente utilizando el explorador de Windows.
  • Plano clave
    ¿Dónde está ese inclinómetro? Utiliza nuestro plano clave para localizar ese inclinómetro con precisión
  • Plano del sitio
    Puede ingresar una vista del plano del sitio en formato JPEG, personalizar la escala y trazar el progreso del desplazamiento máximo en el plano para todos los inclinómetro
  • Características de Trench 2019
    Estabilidad tridimensional según la norma alemana DIN 4126. Estabilidad bidimensional con cuñas o presiones activas. Cargas en 2D y 3D, incluyendo edificios, etc. Variar densidades de lodos, dimensiones de paneles, etc. Definiciones alternativas de factores de seguridad. Uso de patrones de sobrecarga uniformes o personalizados. Factor de seguridad proporcionado a lo largo de la profundidad de la trinchera. Múltiples combinaciones de análisis con diferentes capas o propiedades. Realizar estudios paramétricos sin cambiar los datos predeterminados. Interfaz de usuario amigable y salidas completas de pantalla e impresora. Unidades métricas e inglesas disponibles.
  • STEELBEAM
    - AISC ASD 9th codes - AISC LRFD 13th - AISC, European, and British steel sections - Check H Beams and Pipe Sections - Section Optimization options - Check multiple sections at once - Full report generation with all equations - Generate reports in Word and Pdf
  • I try to open the program but the main window does not appear in my screen.
    There are a couple of reasons why this might happen: - Your Windows drivers need to be updated. You can run the following file, which is supplementary driver: Update Windows CBIOS Usually this driver upgrade resolves the issue and the software can be accessed normally. The same driver upgrade can assist the Windows in your device to recognise the USB key. In case it's not recognized immediately, or there is an exclamation mark in the device manager of the Operating System for the "Crypto-Box 2 USB" device please let us know, so that we can offer further assistance. - Another instance of the software is still open, or the software was not closed properly. You cannot run 2 instances of the same program. Please take a look at your task bar in case the program is already open. If not, you can take a look at the device's Task Manager. If the program appears open in the background, you can try to force stop it from the Task Manager and try to open it again. - You had an external monitor with higher resolution previously connected. Hover mouse over the taskbar button, wait for the preview small window to appear, right click, select to move the window. Bring it in view either with arrow keys or with the mouse. Arrow keys tend to work better. (try left and up)
  • I can access only the LEM analysis method - the other methods seem unavailable.
    If you see in the Analysis Methods only the LEM option as available, it means that probably during the first use of the program you selected the option to lock all other methods. To reverse that, you can do the following: 1. Open the Documents folder in your pc and locate a subfolder named DeepEXTemporaryFiles 2. Locate and delete a file named AnalysisStartMethod 3. Open the software. A window will pop up, asking you to select which method will be selected each time you open the program (i would recommend to keep selected the option for LEM, as it is the method that you should run first in most cases, but this is up to you). At this point, please make sure that the option far down in this window is NOT SELECTED - this is the option that locks all other methods and allows the use of LEM only.
  • Is DeepEX a Finite Element analysis software?
    DeepEX introduces a new additional module, the Finite Element Analysis. The new module enables users to analyze conditions, that consider full soil-structure-interaction. Elasticty models include Linear elastoplastic, and hyberbolic soil models. With the finite element analysis module activated, the software capabilities are greatly expanded and the software can take into consideration neightbouring structures and foundation piles, analyze SEM and TBM tunnels and much more. With FEM, DeepEX provides practically all methods of analysis for deep excavation design. The basic version does not include Finite Elements, though, our Non-linear analysis engine produces close-to-the-reality wall deflections and wall moments. External comparisons prove that the results using DeepEX are very close to the one produced by other Finite Element analysis programs.
  • Which analysis method should I use?
    The selection of the analysis method is a responsibility of the end user. All methods have certain advantages and limitations, so it is usually highly recommended that we perform all types of analysis and consider the most critical results. Conventional Limit Equilibrium Analysis Method is usually required. Non-linear Analysis Method results are usually more realistic, especially in multi-level excavation projects, since the construction staging is taken into consideration. Finite Element Method is considered to produce very accurate results. It can analyze conditions that consider full soil-structure interaction.
  • What analysis methods do you include in DeepEX software?
    DeepEX Software implements all common methods for the design and analysis of deep excavations systems. In the basic version (software core), the program includes the conventional Limit Equilibrium Method, as well as the Non-linear Analysis method (with use of elastoplastic Winkler springs). Finally, a combined method (LEM+NL) is availabe. With the Finite Element Analysis additional, optional module, the user can include in the software the advanced FEM engine of the software (DeepFEM) and analyze wall systems with the Finite Element Analysis method, considering full soil-structure interaction. Conventional Limit Equilibrium Analysis Method (LEM). Limit equilibrium is an analysis method, where limit state conditions are assumed. For excavations and earth retaining structures this usually means that earth pressures are assumed on both the retained and excavated sides. These pressures may represent a failure state such as active or passive lateral earth pressures, or an assumed redistribution such as diagrams by Peck or FHWA. In Limit Equilibrium Analysis, the retaining wall is analyzed to provide moment and force equilibrium, when possible. Support reactions are also calculated, typically by using the tributary area method. Non-Linear (Beam on elastoplastic foundations) Method (NL). DeepEX implements a non-linear finite element code for the analysis of the mechanical behavior of flexible earth retaining structures during all the intermediate steps of an open excavation. The non-linear engine is empowered by many unique advanced features. DeepEX offers the following elastoplastic soil models: a) Linear elastic - perfectly plastic b) Hyperbolic soil model c) Subgrade reaction soil model d) Small Strain Hardening model On the reloading part, every soil model has a linear reloading elasticity parameter. Such a parameter should typically range from 2 to 4 times the loading elasticity value (with average 3). In excavations, the reloading elasticity parameter typically describes the remaining soil below the excavation while the loading elasticity is mostly applicable for soil on the retained side. In a non-linear analysis the excavatio n models reduced to a plane problem, in which a unit wide slice of the wall is analyzed, as outlined in the Figure below. Therefore, DeepEX is not suitable to model excavation geometries in which three-dimensional effects may play an important role. In the modelling of the soil-wall interaction, the very simple yet popular Winkler approach is adopted. The retaining wall is modelled by means of beam elements with transversal bending stiffness EI; the soil is modelled by means of a double array of independent elastoplastic springs; at each wall grid point, two opposite springs converge at most. Limit Equilibrium and Non-Linear Analysis Combination Method (LEM+NL). In this case, DeepEX will first use the LEM method in order to calculate the wall embedment safety factors, and then will run the analysis with the soil springs in order to calculate all other parameters (support reactions, soil pressures, wall moment and shear stresses, wall displacements etc.). In stepped excavations and deadman wall systems, a part of the passive pressures of the back wall is transferred to the front wall as an active impact load when the LEM or the LEM+NL methods are used. The magnitude of this additional load is affected by several parameters, like the depth of the back wall (thus the passive pressures), the distance between the two walls etc. Finite Element Analysis Method (FEM). FEM analysis can consider all construction stage effects and enables us to model full soil-structure interaction. Soil is modelled with a mesh of quadratic triangular finite elements. DeepEX does all the stiffness calculations and help s us to estimate FEM analysis parameters. In FEM, the soil model of each soil type can be defined easily. DeepEX has implemented several models like Mohr-Coulomb, Soil Hardening, Cam Clay and more. It considers drained and undrained clay behavior and it can perform water flow analysis. DeepFEM can be used within the DeepEX software interactive interface, to analyze composite models like braced excavations with struts and rakers. Anchored walls. Deadman wall systems and more. It can calculate all analysis results – soil and water pressures, wall moment shear and displacement diagrams, support reactions, structural and geotechnical ratios, surface settlements and more. The results can be presented in tables and graphically on the model area for each stage. Limit Equilibrium and Finite Element Combination Method (LEM+FEM). In this case, DeepEX will first use the LEM method in order to calculate the wall embedment safety factors, and then will run the analysis with the finite elements in order to calculate all other parameters (support reactions, soil pressures, wall moment and shear stresses, wall displacements etc.). In stepped excavations and deadman wall systems, a part of the passive pressures of the back wall is transferred to the front wall as an active impact load when the LEM or the LEM+NL methods are used. The magnitude of this additional load is affected by several parameters, like the depth of the back wall (thus the passive pressures), the distance between the two walls etc.
  • What water analysis methods do you include in DeepEX?
    The software offers the following options for modeling groundwater: Hydrostatic: Applicable for both conventional and elastoplastic analysis. In ELP, hydrostatic conditions are modeled by extending the “wall lining” effect to 100 times the wall length below the wall bottom. Figure: Water pressures – Simplified flow Simplified flow: Applicable for both conventional and elastoplastic analysis. This is a simplified 1D flow around the wall. In the NL analysis mode, the traditional NL water flow option is employed. Figure: Water pressures – Hydrostatic pressures Full Flow Net analysis: Applicable for both conventional and elastoplastic analysis. Water pressures are determined by performing a 2D finite difference flow analysis. In NONLINEAR, water pressures are then added by the UTAB command. The flownet analysis does not account for a drop in the phreatic line. Figure: Water pressures – Full flownet User pressures: Applicable for both conventional and NL analysis. Water pressures defined by the user are assumed. In the nonlinear analysis, water pressures are added by the UTAB command. Figure: User defined water pressures options in DeepEX
  • How am I sure that the results produced by DeepEX are accurate?
    We have checked thoroughly all aspects and methods included in DeepEX. We have performed extensive verification examples, matching deflections from real projects throughout the United States. We can provide on demand an extensive verification document, containing a big number of verification examples, comparing software results with manual calculations and calculated deflections with real-project measurements. You can open the software verification document in pdf here:
  • Why does the free length of my tiebacks readjusts when i analyze my model?
    If the anchors free length change each time you run the analysis,despite the user changes, probably you have selected the option to use "Auto Canadian" or "Auto Italian" tiebacks free length in your design. If so, no matter what you define, the software uses the selected method recommendation and readjusts the lengths: This option (the Auto Canadian) is the default when you generate a model with the Wizard and some users do not notice it to change it according to their preference: If you wish to use User-Defined lengths, simply access the Draw Supports drop down in the general tab of the software (as presented in the first image above), and change from your selection to the first option "User". This will keep your changes without adjusting when you run the analysis.
  • How to define custom load combinations in DeepEX?
    1. You need to press on the button "Mult." in the Analysis tab of the software (the load combinations dialog appears) and you can access there the "User-Defined Combinations" tab: 2. In the boxes there you can define the factors manually for each property (the names of the parameters are self-explanatory in most cases): 3. After closing this dialog, you can access the drop down next to the "Single" button in the Analysis tab of the program and assign the User Defined Approach:
  • I receive a warning that "normal pressures below the excavation" are required
    DeepEX software provides a number of warnings after the analysis. Some of these warnings are critical and have to do with check ratios that are not satisfied. These warnings (marked with red) need to be taken seriously under consideration by the user. The software gives some optimization recommendations that can be followed, or the user can edit the model manually. Some of the provided warnings (marked with orange) are usually general recommendations according to general practice, or things to pay attention. This message is one of these non critical recommendations, asking to check that the active pressures below the excavation level at not 0. This can be managed from the Drive pressures drop-down in the Analysis tab of DeepEX, if there is selected the option "Normal" and you see active pressures on the pressure diagrams below the excavation you are fine.
  • How can I change the default DeepEX parameters?
    In order to change the software default settings, the user account has to have admin rights in the device, since the default file is located in the pc program files. The procedure is to start the software as administrator, open the Settings dialog from the Help tab and press to set the current project as default. Please review the steps below: A. With the software closed, take the mouse over the software icon in your Desktop and RIGHT-CLICK on it. B. From the menu that appears, please select to run the software as administrator. C. Then, the Default settings dialog can be accessed in the Help tab of DeepEX, perform the changes and select to set current project as Default. This will change the default file that is loaded when the software normally opens.
  • Can i include all the construction stages in a DeepEX model?
    In DeepEX it is not only available, but also highly recommended to create all intermediate construction stages in an examined project model. The software calculates and presents results for each stage, which is important since the last stage is not always the most critical one. In Limit Equilibrium Method, each stage is independent, thus wall deflections (and likely wall bending moments) are not realistic for cases with multiple supports. In Non-linear and Finite Element analysis methods a strict staging is required so the methods can converge and produce realistic results. With these methods, the initial stage is geostatic without excavation. Wall deflections and wall moments depend on construction staging. Figure: Wall deflection diagram, wall moments and support reactions in different stages
  • Wall embedment Safety Factors in DeepEX
    For the wall embedment, DeepEX calculates the Rotational, Passive and Length FS, taking into consideration the driving and resisting moments and shear forces below the last support, and available length respectively: After the analysis, you can access the Wall embedment FS table results and review what is going on on each wall/ in each stage A general recommendation could be you to locate the most critical (lowest) of the 3 calculated factors in each stage (FSpas, FSrot and FSEmbed or length) and make sure that: 1. In Service Conditions, FSmin > 1.5 in the cantilever excavation stage, FSmin > 1.4 in all other stages with activated supports. 2. When you use Load factors (i.e. AASTHO settings Strength conditions or Eurocode 7 Combinations), FSmin > 1.2 in the cantilever excavation stage, FSmin > 1 in all other stages with activated supports.
  • How are the settlements calculated in DeepEX?
    In DeepEX we provide 3 analysis methods: A. The classical Limit Equilibrium Method (LEM) B. The Non-Linear analysis method with use of elastoplastic Winkler springs (NL) C. The Finite Element Analysis Method (FEM). The FEM engine is available as an additional optional module within the software. About Settlements in DeepEX: - The settlement analysis in LEM is semiempirical. It estimates first horizontal displacements and then goes to estimate Vertical. If corrections to the method by Clough are made (available in the software), then the method is equivalent to the one presented by Storer (see the attached file). - In NL the horizontal displacement is calculated directly from the wall displacement. We have expanded on the NL analysis to consider if the wall base is moving. Then, the displaced horizontal volume is transformed to a settlement volume. - In FEM the settlement contours are calculated automatically.
  • Wall Passive, Active and Water widths in DeepEX
    In DeepEX software, in the wall sections dialog, user can define the wall spacing, as well as, the widths to be used in the calculations of the active, passive and water pressures. The following options are available: - Width d is originally the H beam flange size (if you use H steel beams as soldier piles). These are supposed to be driven piles. If you wish to convert them to drilled piles, you change the width manually to actually specify the diameter of the hole were the steel beam will be installed and covered with concrete. If you do reinforced concrete piles, then directly the width d is the diameterth of the concrete pile. - S is the wall spacing. For diaphragms and sheet piles you can use the value "1 ft" or "1 m" to review the results on screen per ft (or per meter) of the wall. In general, all the result values reported on screen are divided with the wall spacing to be presented /ft (or /m). For secant pile walls you define the center to center distance for every other pile. For tangent and soldier piles you define the center to center distance of each pile. - The Passive, Water and Active widths are the widths used below the excavation for the calculation of passive, water and active pressures respectively. For continuous walls (like secant piles, tangent piles, diaphragms, sheet piles etc), normally you define the same value to all these parameters (Spacing = Water width = Passive width = Active width). For non-continuous wall sections like soldier pile walls, there is no lagging below the excavation. In this case it is recommended to take: For Passive Width: 2.5 to 3 times the pile width d (H beam flange width) (for driven steel piles) or 2.5 to 3 times the pile width d (diameter) (for circular drilled piles). This value is limited by the spacing, so if 2.5*Pile diameter > Spacing, you just use the spacing. For Water and Active width: These should be equal to the flange or pile diameter, depending on the pile type (as above). By pressing the "?" button in the wall sections dialog, all these options are presented and explained.
  • Can I design both permanent and temporary walls in DeepEX?
    DeepEX can design both the temporary and the internal permanent walls. The user can add the permanent walls to the model using the “Draw left/right wall element” tool (see question #16). This allows the user to actually draw an additional wall element that can be placed either along the main wall, or on the left or right side of the main wall. The additional wall elements can be used as main or slave walls. Figure: External permanent and internal permanent walls in a metro station project designed with DeepEX
  • How to adjust the impact load on deadman systems and stepped excavation walls?
    When you have a system of walls like a stepped excavation or a deadman system, then the LEM analysis takes into consideration the interaction between the 2 walls. Basically, depending on the distance of the 2 walls and the height of the back deadman wall, if the passive pressures of the back wall do not have enough space to be distributed into the soil, a portion of them will be added in the active pressures of the front wall as an additional impact load. In DeepEX, this additional load in calculated when you use the Limit Equilibrium method (LEM), or the combination method (LEM+NonLinear analysis), and the impact load is distributed on the wall, affecting directly the active pressures on the front wall. In reality, not all this pressure is transferred. A big portion of it will be actually held by the back wall, because of the back wall passive resistance. This reduction is not taken into consideration automatically in DeepEX. In the program, we have a factor for this case, called Impact Load Adjustment Factor. There is a semi-empirical method that suggests to run the analysis and review the passive wall embedment FS of the back wall, and use a value like 1/FSpassive (or more if you wish to be more conservative) as an impact load adjustment factor.
  • How to apply vertical adhesion for undrained clays in DeepEX?
    To apply vertical adhesion for clays you need to have the Limit Equilibrium Analysis method selected (the adhesion is used in general, just you need to switch to LEM to pass these settings for now). If you do so, then in the same drop down you can define the wall friction, you will see options to use vertical adhesion for clays on each wall side, you can click on the items you wish to apply: Then, you can double-click on the wall and access the "Advanced Features" tab of the dialog that appears, where you can define the vertical adhesion as a percentage of the undrained shear strength, Su:
  • How can i add a CPT log in your software?
    The user can create the file in excel and then export it as tab delimited. The file can be of .txt or .cor format. The files should follow a specific format - 1st row should be parameter names, second row should be the units, and then row by row (without the first column numbering), we need to include four specific columns as presented in the image below: After the cpt log import, the user needs to press on the "Process Data" button, so the rest of the properties are estimated:
  • How does DeepEX take into consideration the loads from adjacent buildings?
    In DeepEX we can inlcude any commom type of external loads, either on the soil suftwace (strip loads or point loads), or loads directly applied on the wall. A building can be added on the model area as an external 3D building load, or simulated as an external strip surcharge: 1. Adding a building load: From the General tab of DeepEX we can select to add a building load and next click on the ground, close to the point where we wish to apply the building load. In the dialog that appears, we can define the exact building position, building size as well as several building properties (number of superstructure/understructure floors, number of columns, beam and column loads etc.): 2. Adding a building as an external strip surcharge: From the General tab of DeepEX, select to add a surface strip surcharge to the model: Click on the model surface on 2 points, close where you wish to apply the building load: In the dialog that appears we can define the exact load possition, magnitude and type (permanent/temporary). In addition, if we wish to include the building foundation, we can unselect the option “Is Surface”. This way we can also edit the load elevation, defining the foundation level for the load application.
  • Can DeepEX consider a sealed excavation?
    In the Analysis tab of DeepEX, we can choose to create a sealed excavation (create a liner effect). Figure: Sealed excavation option in DeepEX Figure: Water pressure diagram when sealed excavation option is selected
  • What are the implemented methods for the earth coefficients Ka and Kp?
    In general, we recommend you to use either the Automatic method for the earth coefficients, or the User Mode, where you can select the method for the calculation of Ka Kp. Ideally, you can define the soil properties you wish (friction angle and wall friction) and see directly the calculated earth coefficients on the model area for each soil type. With a few tries, you can define realistic soil properties: Automatic Mode (Recommended): If you select the Automatic approach (which is recommended), the software uses the following methods (according to the defined model options - straight or inclined surfaces, use of wall friction or not, use of seismic pressures or not): A tool that can help you estimate the properties a bit faster can appear if you type in the Command line of the software (below the stages) the command KA ESTIMATE and press enter. In that dialog you can try sets of friction angles/wall frictions and see fast the calculated Ka properties with different methods (what interests you is the Kah = horizontal component). A similar tool appears for Kp if you use the command KP ESTIMATE and press enter. User Mode: In User mode, you can step in and select the method for each wall driving and resisting side independently. Manual Mode - NOT RECOMMENDED - Works ONLY with NL Analysis The Manual is used only for Non-Linear analysis and it is recommended ONLY for cases like very rough surfaces, where the wedge analysis fails to find suitable Ka/Kp values. There you could make totally horizontal surfaces, apply 0 wall friction etc, and let the software use the user-defined Ka Kp from the soils dialog. You can find more information in the following article/video: https://www.deepex.com/training/examples/advanced-video-examples/lateral-earth-coefficients-soil-pressures-deepex
  • Can I add an external surcharge in my DeepEX model?
    In DeepEX software, we can add a series of external surcharges on the model area, in order to simulate any potential traffic loads, construction loads, adjacent structures and more that can affect our excavation site. External loads can graphically be added in the model area, using the draw loads tools provided in the General tab of DeepEX. Adds a surface surcharge (define the start and end point of the surcharge). Adds a surface line load (click a surface point to add a point load). Adds a surcharge on the wall (define two wall points to add a surcharge). Adds a line load on the wall (define a wall point to add a wall point load) Adds a prescribed condition at a wall (click on the wall to add a prescribed condition). A prescribed condition is a predefined displacement or wall rotation (non-linear analysis) Adds a footing load (3D) (define a point where to install a footing load). Creates a new building (define a point where to install a building). Adds a 3D surface load (click on it and draw a 3D load in the Plan view screen). Click to manage the elastic load options (see paragraph 4.8). Edit load combinations. Load combinations are user defined combinations where a load can be selected manually if it is favorable or unfavorable. Assign a load combination. With this option, a load combination can be assigned to a specific design section.
  • How can i apply an axial load on a wall & calculate the axial capacity?
    A. Adding an Axial Load You can add a Linear Load on the wall and define the Pz component (vertical load magnitude): B. Calculating Axial Load Diagrams In the Design tab of the software, you need to select the option "Include axial load on wall" (else the axial load will not be examined). C. Defining Geotechnical Capacity Options: In the Stability+ tab of the software, you can select the option "Calculate Axial Geotechnical Capacity". In the same area, you can also set the Pile Calculation Settings, Select the pile installation method and Edit the method options: D. Including Soil/Wall Skin Friction (for concrete walls) When we are using any type of concrete walls (secant/tangent piles, diaphragm walls, drilled soldier piles (covered with concrete) etc) and we wish to calculate the axial pile capacity, we also need to access the Bond tab in the Soil Types dialog and set the ultimate bond resistance value. E. Reviewing the Axial load and Axial Capacity Results When we have selected to include axial loads on the wall and we have used a vertical load (or a load with a vertical component), we can see the Axial load diagram in the Results tab of the software. In the same diagram we can also see the calculated design and ultimate geotechnical capacities (if we selected so from the Stability+ menu - See C above).
  • Can I include more than one wall types or wall sections in the same model?
    In DeepEX, the user can create several wall sections that can be assigned independently to any wall on the model area (in the same or different examined 2D sections) or to additional wall elements. The list of wall sections is global in the specific project file, meaning that the same or any sections from the list can be used in different walls of different design sections. This allows the user to check fast different alrernatives for the project surrounding walls, use different walls in different project locations, create composite models, as well as design in the same model a temporary excavation and the internal permanent walls. Figure: Wall sections in DeepEX
  • Can I design a braced excavation using DeepEX?
    DeepEX can design excavations braced with steel struts and rakers. User can define multiple strut levels, as well as the strut and waler sections. The 3D Frame analysis module of DeepEX can be used to simulate the full shaft with all bracing for each support level. Figure: Braced excavation in DeepEX – Design Section A braced excavation can be created either by using the DeepEX Model Wizard, or manually in the model area with the tools included in the General tab of DeepEX. If you create the model manually(model is manually created), then you have to include the following stages(the following stages need to be included): 1. Initial Stage: Define wall section properties, soil properties and stratigraphy. No excavation should be performed in the initial stage. 2. Excavation Stage: Excavate between the two walls to an elevation below the desired strut installation level. (Repeat for each support level) 3. Support Installation Stage: Draw a strut support, connecting the two walls. You can define the exact strut elevation on the wall, the exact spacing between the strut and the strut section properties. (Repeat for each support level) 4. Final Excavation Stage: In this stage you should excavate to the desired final excavation elevation.
  • Can I design a top-down excavation using DeepEX?
    DeepEX can be used for the design and analysis of top-down excavation systems, braced with concrete slabs. Basement and intermediate floor slabs can be added as supports and they can be designed with DeepEX. Figure: Top-down excavation with concrete slabs in DeepEX A top-down excavation can be created either by using the DeepEX Model Wizard , or manually in the model area with the tools included in the General tab of DeepEX. If model is manually created, then the following stages need to be included: 1. Initial Stage: Define wall section properties, soil properties and stratigraphy. No excavation should be performed in the initial stage. 2. Excavation Stage: Excavate between the two walls to an elevation below the desired slab installation level. (Repeat for each support level) 3. Support Installation Stage: Draw a slab support, connecting the two walls. You can define the exact slab elevation on the wall and the slab section properties. (Repeat for each support level) 4. Final Excavation Stage: In this stage you should excavate to the desired final excavation elevation.
  • How can i design a gravity retaining wall with DeepEX?
    DeepEX software can design gravity retaining walls of any shape. This option is available with the additional Gravity Wall module. User has the flexibility to create basic types of retaining walls such as full gravity or with stem. Flexural, reinforcement can be included where ever desired. A gravity wall can also be used as a pier or an abutment wall with piles. The use of gravity wall in the model can be defined in the “Edit wall data” dialog of DeepEX (Figure 1). When the Gravity wall module is activated, there appears the option “Use gravity wall section”. The “Edit wall data” dialog appears when user double-clicks on the wall in the Model area of DeepEX. Figure 1: The Edit wall data dialog with “Use gravity wall section” option. Then the following option is selected, user should press on the button Edit Section Data. This will cause the “Retaining wall data” dialog to appear (Figure 2). Here, the user can define the retaining wall dimensions and reinforcement. Figure 2: Retaining Wall Data Dialog Depending on the selected wall type on the left side of this dialog, several dimension properties are available to be defined (Table 1). The reference coordinate for a gravity wall is taken as the left most corner of the stem (or top of wall). This coordinate is defined from the main wall data dialog. Height - Total wall height (excluding the key if used) Base - Total base wall width Top width- Top of the wall width Dist. To top left corner - Distance to top left corner from the far left side of the wall Heel thick - Base thickness on the driving side Toe width - Distance from the end of the main wall body to the end of the wall toe Toe thick - Base thickness on the resisting side The following retaining wall types are available in DeepEX: Calculate Driving Pressures from edge of wall: In the default mode, stability safety factors are calculated from soil and other pressures directly acting on the driving wall sides. While this assumption gives very good, approximate results, in theory the driving horizontal pressures can be taken at the wall edge. By selecting this option, safety factors are calculated by pressures acting directly on a vertical wall edge that is defined from the left most base coordinate if pressures are driving from left to right or the right most coordinate if pressures are driving from right to left. If this option is selected, then driving soil pressures on this vertical edge are always taken as Active or At-rest. The reinforcement data table enables the use of reinforcing bars on each wall face. Please note that DeepEX does not account for development lengths and reinforcement bending. It is the final responsibility of the engineer to decide how reinforcement has to be bent, cut, or shaped for fabrication. DeepEX though will calculate and report all bending and shear capacities.
  • Can the wall section change along the wall depth?
    We can change the wall section with depth with the "Additional Wall Elements" tool of the software. This allows the user to actually draw an additional wall element that can be placed either along the main wall, or on the left or right side of the main wall. The additional wall elements can be used as main or slave walls: A. Double click on the wall, edit the wall section and create all the wall sections that you need to use in your model. B. Define the position, top elevation and depth of the main left wall. C. Press on the arrow next to the option Edit 1st wall of the General tab of DeepEX and select to Draw left wall element (see figure below). D. Draw an additional wall element below the main wall (click on 2 points). In the dialog that appears, define the wall section and position of the additional wall.
  • Can I design a circular shaft using DeepEX?
    DeepEX can design circular shafts, either cantilever, or supported by ring beams and cap beams. Figure: Circular excavation with cap beam and ring concrete support in DeepEX A circular shaft model can be created with the DeepEX Model Wizard. As shown on the instructions below: Open DeepEX Wizard and select the required unit system. Figure: Define model unit system Select the analysis method, and the desired classical earth and water pressures method. Figure: DeepEX Wizard – Welcome tab Select the project type and define the basic project properties (final excavation depth, wall length, circular shaft radius, tip of the wall elevation and water table). Figure: DeepEX Wizard – Dimensions tab Define the project soil properties and stratigraphy. Figure: DeepEX Wizard – Soil Layers tab Define the wall section properties. Figure: DeepEX Wizard – Wall Type tab Define supports (cap beam, liner walls, ring beam supports). Figure: DeepEX Wizard – Supports tab Define depth for each support level. Figure: DeepEX Wizard – Stages tab Define surcharges. Figure: DeepEX Wizard – Surcharges tab Define structural and geotechnical codes. Figure: DeepEX Wizard – Codes tab
  • Can I design a bin-type wall using DeepEX?
    DeepEX can design bin-type walls. The two main walls can be connected with tierods and user can choose to excavate outside the walls. Figure: Bin type wall design in DeepEX A bin-type can be created either by using the DeepEX Model Wizard, or manually in the model area with the tools included in the General tab of DeepEX. If the model is created manually, then the following stages need to be included: 1. Initial Stage: Define wall section properties, soil properties and stratigraphy. No excavation should be performed in the initial stage. 2. Excavation Stage: Excavate outside the two walls to an elevation below the desired tierod installation level. (Repeat for each support level) 3. Support Installation Stage: Draw a tierod, connecting the two walls. You can define the exact tierod elevation on the wall and the tierod section properties. (Repeat for each support level) 4. Final Excavation Stage: In this stage you should excavate to the desired final excavation elevation.
  • Can I design a cantilever excavation using DeepEX?
    DeepEX can design cantilever excavations. In Limit Equilibrium Analysis, user can select to use either the Free or the Fixed Earth Method for the cantilever calculations. Figure: Cantilever excavation in DeepEX
  • Can I design a dead-man wall using DeepEX?
    DeepEX can design dead-man wall systems. The software takes into consideration the earth and water pressures, the external loads, as well as the interaction between the two walls. Figure: Dead-man wall design in DeepEX A dead-man wall can be created either by using the DeepEX Model Wizard, or manually in the model area with the tools included in the General tab of DeepEX. When the model is manually created, then the following stages need to be included: 1. Initial Stage: Define wall section properties, soil properties and stratigraphy. No excavation should be performed in the initial stage. 2. Support Installation Stage: In this stage you should draw a ground anchor support (tierod), connecting the two walls. You can define the exact tierod elevation on the wall, the exact spacing between the tierods and the tieback section properties. 3. Backfill Stage: Backfill between the two walls up to the top of the wall elevation. 4. Final Excavation Stage: Excavate to the desired final excavation elevation.
  • Which wall types can I design using DeepEX?
    DeepEX software can design any common wall type in minutes. The user can select the preferred wall type and define fast the wall section properties (dimensions, reinforcement, materials). The following wall types are available: Soldier pile and lagging walls (supported by reinforced concrete piles, prestressed concrete piles, concrete piles with GFRP, H steel beams, steel pipes, steel channels, rectangular hollow steel sections, timber piles and more) Secant and Tangent pile walls (with steel reinforcement or steel sections) Sheet pile walls - Steel Sheets and Timber Sheet Piles Diaphragms (Slurry) walls - Reinforced Concrete Walls Soldier pile and tremied concrete walls (SPTC) Combined sheet pile walls (I beams or pipes combined with sheet piles) Box sheet pile walls Custom walls, that can be used to simulate any other wall type. Figure: Wall types in DeepEX
  • Can DeepEX perform lagging calculations for soldier pile walls?
    The lagging is not included in the wall analysis - it is used to transfer the loads on each pile and then the software does the full design of the piles. DeepEX estimates the lagging loads and does some basic lagging checks. Typically the lagging is a simply supported beam, but the load can be modified within the program. The default is uniform, but is can be reduced or converted from uniform to other: After the analysis, in the Analysis and Checking summary table that appears, you can select to display the "One Design Section" from the list on the left, select your design section and select to review the Lagging Estimation: The end user needs to select to include in the report the related available report section, so these checks are reported:
  • Pressure widths in the wall sections dialog
    Wall Section Parameters for each wall case: A. Horizontal Spacing S This is the distance taken into consideration in the calculations. It is important, because it is used to divide the calculated moments, shears etc, presenting the results per foot (or per meter) of the wall. A.1. Continuous walls (concrete diaphragms - slurry walls , sheet piles): It is recommended to use as spacing 1ft (or 1m). A.2. Continuous walls (secant piles): The spacing is the center-to-center distance between the reinforced piles. A.3. Continuous walls (tangent piles): The spacing is the center-to-center distance between every pile. A.4. Non-Continuous walls (soldier piles - combined sheet piles): The spacing is the center-to-center distance between every pile. B. Width D This parameter is the actual wall width (thickness). B.1. Continuous walls (concrete diaphragms - slurry walls): The width is the concrete section thickness (defined by the end user). B.2. Continuous walls (Sheet piles): The width is the equivalent wall thickness (defined automatically by the selected steel-section, only graphical). B.3. Secant - Tangent piles - Soldier pile wall supported by reinforced concrete piles: The width is the diameter of each pile (defined by the end user). B.4. Soldier pile wall supported by steel sections - Combined sheet pile walls: By default, the steel sections are considered driven, and the Width value is defined as the maximum section dimension of the selected steel beam section (Flange - Web), or the steel pipe diameter. If we will to use steel sections in drilled holes below the excavation with concrete cover, then we can manually change the width D, to define the hole diameter. C. Active and Water width This is the width for the calculation of the active and water pressures below the excavation where there is no lagging (for soldier pile walls). C.1. Continuous walls (diaphragms, sheet piles, secant/tangent piles): It is recommended to use the wall Spacing (as defined above). C.2. Non-Continuous walls (soldier piles, combined sheet piles): It is recommended to use the Width value (as defined above). D. Passive width This is the width for the calculation of the passive pressures below the excavation where there is no lagging (for soldier pile walls). D.1. Continuous walls (diaphragms, sheet piles, secant/tangent piles): It is recommended to use the wall Spacing (as defined above). D.2. Non-Continuous walls (soldier piles, combined sheet piles): It is recommended to use 2.5 to 3 times the Width value (as defined above). This value (2.5 or 3*D) is limited by the defined Spacing, so if 2.5*D > Spacing, use the Spacing. Combined Sheet Pile Walls The combined sheet pile walls (king piles) are a combination of steel sections (H piles or pipes), with sheet piles that are used as lagging. Default - Continuous Wall In DeepEX, the sheet piles extend up to the pile tip elevation by default, so the wall is considered to be a continuous wall along the full wall depth. The pile tip elevation (bottom of the wall) is calculated automatically, since we defile the wall top elevation and the total wall depth. In that case, we need to specify the wall spacing and thickness as defined above in A.4 and B.4, and then we have to use the Spacing value to all active, passive and water widths). Non-Continuous Wall If we wish to stop the sheet pile sections to a specific elevation, higher than the pile tip elevation, we have to make the following changes: 1. For the active, water and passive widths below the excavation, we have to use the pile width as defined in C.2 and D.2 above. 2. The Custom Elev. Value in the Edit Wall dialog (appears when we double-click on a wall), is the elevation until which the sheet piles are extended. Below this elevation, the active, passive and water widths will be used as defined in (1) right above.
  • Can DeepEX optimize the wall length?
    The software provides two options for the wall embedment optimization in Limit Equilibrium Analysis: A. Define the wall depth manually and check the calculated wall embedment safety factors. After the analysis is performed, the Analysis summary table appears. There wecan review the most critical results among all stages. We have to make sure that all 3 wall embedment factors (length, passive, rotational) are above a limit (typically this could be 1 , 1.2, 1.3, 1.5 depending how you design). After we close this summary table, we can still open the Wall Embedment FS results in the results tab of DeepEX for each stage: B. Automatic wall embedment software optimization use: When using the Limit Equilibrium Method (LEM), the wall length can be optimized based on the wall embedment safety factors. This option can be located at the Design Tab of DeepEX and it is available only when LEM analysis is selected. There, the required safety factor can be defined for the cantilever stage and for the supported excavation stages. The software will change the wall length to achieve the wanted wall embedment FS.
  • Can DeepEX optimize the wall section?
    DeepEX offers optimization tools that can help the user to optimize the wall and support sections. Though, the user should select the original wall type and run the analysis. The software keeps the wall type and proposes wall sections that offer enough structural capacity. The user can select the ideal section from lists of suitable sections presented by the software. Figure: Optimization tools of DeepEX Figure: Option to optimize the wall section in DeepEX Figure: Proposed steel beam sections from wall section optimization
  • Which structural codes do you include in DeepFND and HelixPile?
    The following interational structural design codes are implemented in our software and allow the design of any pile structural section (Steel, Concrete, Timber Sections): ACI 318-11 and 318-19 (Reinforced Concrere Members) ASD 1989 (Allowable Stress Design - Steel Members) AASHTO LRFD 13th Edition (Steel Members) AISC 360 and 360-Allowable (2010 and 2016) Australian Standards (AS 3600, AS/NZS 4100) EUROCODE 2, 3 and 8 Specifications - Several national annexes are implemented
  • What is the difference between DeepFND and HelixPile?
    DeepFND and HelixPile are two similar, powerful software programs for the design and evaluation pile foundations. The programs can perform structural and geotechnical, lateral, and axial analysis of any foundation pile (single piles, pile groups and pile rafts). The only difference between the two programs is the available pile types. DeepFND can design all pile sections and pile types (helical and non-helical – drilled, driven, caissons, micropiles, CFA piles and more), whereas HelixPile can design only helical piles.
  • Which Geotechnical Codes - Load Combinations can i include in my model?
    DeepFND and HelixPile software programs implement the load combinations according to the following geotechnical codes: AASHTO LRFD 6, 8, 9, AASHTO 17, AASHTO GFRP-2 CALRANS LRFD PEN DOT AASHTO European Codes (DIN, BS, XP94, DM, DA) Chinese Standards (CN) Eurocode 7 Load Combinations
  • Does your program check the structural capacities of the piles as well?
    DeepFND and HelixPile software have implemented several structural codes used worldwide. The software do all calculations according to the selected standard and calculate the pile moment and shear capacities. All structural design checks and equations can be included in the software reports. Figure: Pile Moment, Shear and Displacement Diagrams - DeepFND
  • What type of Pile Analysis can your software do?
    Our foundation piles design software DeepFND and HelixPile can perform axial and lateral analysis of any pile type. The programs can calculate the pile shaft resistance and the bearing capacity of the piles, taking into consideration the pile installation method. In addition, the software can do lateral pile analysis, calculating the pile displacements, moment and shear diagrams for any applied load combination on the pile head.
  • What happens if my local country's codes are not implemented in your software?
    Our development team we can implement specific codes upon request. All we need from the client is a copy of the code recommendations in pdf format. Typically, the code implementation can be finished within some working days.
  • What pile types can i design with your software programs?
    DeepFND software can be used for the design of any foundation pile and support system. DeepFND implements all approved scientific methods for the design of deep foundation piles. With DeepFND we can design drilled piles, driven piles, CFA piles,caissons, drilled-in-displacement piles, micropiles and helical piles. Drilled Piles Driven Piles Drilled-In-Displacement Piles CFA Piles Micropiles Caissons Helical Piles On the other hand, both our foundation pile design software programs - DeepFND and HelixPile - can design helical piles (steel pipes, square solid and square hollow sections with helical plate configurations). Figure: Non-Helical Pile Types (DeepFND) Figure: Helical Pile Types (DeepFND and HelixPile)
  • Can your software design pile caps with a group of piles?
    Our foundation pile design software can design single foundation piles, pile groups and pile rafts. The following pile cap shapes are available: Rectangular Pile Caps Triangular Pile Caps Circular Pile Caps Hexagonal Pile Caps Octagonal Pile Caps User-Defined Perimeter Pile Caps Pile Rafts The user can create a concrete cap of any shape and define the pile configuration (pile locations and structural sections). The program can calculate the load that is transfered on each pile, considering the pile location and analyze all piles. Figure: A Rectangular Cap with Concrete Piles - DeepFND Figure: A Circular Cap with Helical Piles - DeepFND and HelixPile
  • How can I change the default Software parameters?
    In order to change the software default settings, the user account has to have admin rights in the device, since the default file is located in the pc program files. The procedure is to start the software as administrator, open the Settings dialog from the Help tab and press to set the current project as default. Please review the steps below: A. With the software closed, take the mouse over the software icon in your Desktop and RIGHT-CLICK on it. B. From the menu that appears, please select to run the software as administrator. C. Then, the Default settings dialog can be accessed in the Help tab of the software, perform the changes and select to set current project as Default. This will change the default file that is loaded when the software normally opens.
  • How can I change the default Software parameters?
    In order to change the software default settings, the user account has to have admin rights in the device, since the default file is located in the pc program files. The procedure is to start the software as administrator, open the Settings dialog from the Help tab and press to set the current project as default. Please review the steps below: A. With the software closed, take the mouse over the software icon in your Desktop and RIGHT-CLICK on it. B. From the menu that appears, please select to run the software as administrator. C. Then, the Default settings dialog can be accessed in the Help tab of the software, perform the changes and select to set current project as Default. This will change the default file that is loaded when the software normally opens.
  • Which Geotechnical Codes - Load Combinations can i include in my model?
    DeepFND and HelixPile software programs implement the load combinations according to the following geotechnical codes: AASHTO LRFD 6, 8, 9, AASHTO 17, AASHTO GFRP-2 CALRANS LRFD PEN DOT AASHTO European Codes (DIN, BS, XP94, DM, DA) Chinese Standards (CN) Eurocode 7 Load Combinations
  • What pile types can i design with your software programs?
    DeepFND software can be used for the design of any foundation pile and support system. DeepFND implements all approved scientific methods for the design of deep foundation piles. With DeepFND we can design drilled piles, driven piles, CFA piles,caissons, drilled-in-displacement piles, micropiles and helical piles. Drilled Piles Driven Piles Drilled-In-Displacement Piles CFA Piles Micropiles Caissons Helical Piles On the other hand, both our foundation pile design software programs - DeepFND and HelixPile - can design helical piles (steel pipes, square solid and square hollow sections with helical plate configurations). Figure: Non-Helical Pile Types (DeepFND) Figure: Helical Pile Types (DeepFND and HelixPile)
  • Which structural codes do you include in DeepFND and HelixPile?
    The following interational structural design codes are implemented in our software and allow the design of any pile structural section (Steel, Concrete, Timber Sections): ACI 318-11 and 318-19 (Reinforced Concrere Members) ASD 1989 (Allowable Stress Design - Steel Members) AASHTO LRFD 13th Edition (Steel Members) AISC 360 and 360-Allowable (2010 and 2016) Australian Standards (AS 3600, AS/NZS 4100) EUROCODE 2, 3 and 8 Specifications - Several national annexes are implemented
  • What happens if my local country's codes are not implemented in your software?
    Our development team we can implement specific codes upon request. All we need from the client is a copy of the code recommendations in pdf format. Typically, the code implementation can be finished within some working days.