Diaphragm (Slurry) Walls Design Softare - DeepEX

The continuous diaphragm wall (also referred to as slurry wall in the US) is a structure formed and cast in a slurry trench (Xanthakos, 1994). The trench excavation is initially supported by either bentonite or polymer based slurries that prevents soil incursions into the excavated trench. The term "diaphragm walls" refers to the final condition when the slurry is replaced by tremied concrete that acts as a structural system either for temporary excavation support or as part of the permanent structure. This construction sequence is illustrated in Figure 1.The term slurry wall is also applied to walls that are used as flow barriers (mainly in waste containment), by providing a low permeability barrier to contaminant transport.

Which wall system is best for your case?

Make the right choice - SignUp

DOWNLOAD FREE TRIAL

Slurry Wall Equipment

Slurry wall technology hinges on specialized equipment for excavating slurry trenches. The simplest type of trenching equipment is the mechanical clamshell attached on a kelly bar. Individual contractors have developed their own specialized trenching equipment like hydraulic clamshells, fraise or hydromills (sample manufacturers: Icos, Bauer, Casagrande, Case Foundation, Rodio etc). Figure 2 shows selected pictures from construction of a new subway in Boston (MBTA South Boston Transit way) including two slurry wall construction machines.

Slurry Wall History
The first diaphragm walls were tested in 1948 and the first full scale slurry wall was built by Icos in Italy in 1950 (Puller, 1996) with bentonite slurry support as a cut-off wall. Icos constructed the first structural slurry wall in the late 1950s for the Milan Metro (Puller, 1996). Slurry walls were introduced in the US in the mid 1960s by European contractors. The first application in the US was in New York City [1962] for a 7m diameter by 24m deep shaft (Tamaro, 1990), that was followed by the Bank of California in San Francisco (Clough and Buchignani, 1980), the CNA building in Chicago (Cunningham and Fernandez, 1972), and the World Trade Center in New York (Kapp, 1969, Saxena, 1974). The majority of diaphragm wall projects in the US are located in six cities Boston, Chicago, Washington DC, San Francisco and New York.

Diaphragm walls are extensively used in the Central Artery/Tunnel project (CA/T) in Boston, Massachusetts (Fig. 3). Work in the CA/T involves many cut and cover tunnels constructed under the existing artery. Some of the deepest T- slurry walls, extending 120' below the surface have been constructed for the Central Artery (Lambrechts et al., 1998).

LIMITATIONS OF SLURRY WALLS
Slurry wall construction requires the use of heavy construction equipment that requires reasonable headroom, site area, and considerable mobilization costs. In limited headroom conditions smaller cranes can be used and the technique can be altered to “remote backfill mixing”, where the excavated soil is transported and mixed to a remote location, and then is returned as backfill.

Cement-bentonite slurry walls also provide another alternative. In this method, the trenches are excavated under a slurry that later solidifies and create the permanent barrier/backfill.

Also, one should check that used bentonite slurry and soil-bentonite slurries are able to withstand chemical attacks from the insitu soils. In such a case, alternate slurry materials such as attapulgite and treated bentonites can be used. Other backfill compositions may be used when deemed appropriate (soil-attapulgite and soil-bentonite with geomembrane inserts). When required, cement-bentonite and soil-cement-bentonite can provide greater strengths.

SLURRY WALL COSTS
Slurry wall construction cost for cut-off barries is considerably cheeper than diaphragm wall construction for deep excavations. The differences arise mainly from construction method differences. In cut-off walls construction is much quicker as a continuous trench is excavated and backfilled and reinforcement cages are seldomly used. In contrast, in diaphragm walls the wall perimeter is constructed panel by panel and reinforcement cages are almost always used.

Software Created from Engineers to Engineers Like You!

Some software programs are solely developed by software programmers. Our retaining wall software program DeepEX is developed by specialized earth retention engineers. Review DeepEX Capabilities

Diaphragm Wall braced with struts in DeepEX.png

Why Choose DeepEX?

Design and optimize a deep excavation in as little as 5 minutes!

Evaluate different alternatives and methods in seconds:
Limit Equilibrium, Non-Linear, Finite Element Analysis Methods!

Multiple Wall Types: Soldier piles, secant piles, sheet piles, concrete diaphragms, tangent piles, combined sheet piles and more!

Structural and Geotechnical Design of any deep excavation model:
AASHTO LRFD, CALTRANS, ACI, AISC, EUROCODES 2,3,7,8, DIN, BS, Australian Codes, Chinese Codes and more!

Estimate the cost, perform a global stability analysis, prepare your section drawings (DXF)!

Impress your clients with the excavation in 3D or virtual reality before anything is constructed!

Save time and effort: Fast Design, Model Wizard, Automatic Optimization Tools!

Expert Design & Support: We offer personal and professional support to all our clients!

New Tapan Zee Bridge Cofferdams DeepEX.JPG

New Tapan Zee Bridge Cofferdams, New York, NY

Deadman Model.JPG

Deadman Sheet Pile Wall in DeepEX

Video Examples

Presentations_DeepEX_Projects.png

 

Avoid a One-Million Dollar Mistake!

Book a Free Web Presentation

Trusted By

1. Logo Arup.JPG
2. Logo Keller.JPG
3. Logo PBA.JPG
4. Logo AECOM.JPG
5. Logo Hatch.JPG
6. Logo Mottmac.JPG
7. Logo Jacobs.JPG
8. Logo GZA.JPG
9. Logo GarretFlaming.JPG
10. Logo Lavalin.JPG
11. Logo Magnusson Klem.JPG
12. Logo MoDOT.JPG
13. Logo URS.JPG
14. Logo Stalworth.JPG
15. Logo Kleinfelder.JPG
16. Logo Samsung.JPG
17. Logo Gepfreeze.JPG
37._Logo_ASAP.jpg
19. Logo GulfConstruct.JPG
20. Logo Temeltas.JPG
21. Logo AttikoMetro.JPG
22. Logo Flatiron.JPG
23. Logo Kozaba.JPG
24. Logo Siefert.JPG
25. Logo AlGhuair.JPG
26. Logo Earthtech.JPG
27. Logo Russo.JPG
28. Logo Danbro.JPG
29. Logo Atkins.JPG
30. Logo LBFoster.JPG
31. Logo Dominion.JPG
32. Logo Acons.JPG
33. Logo NSCC.JPG
34. Logo Econstruct.JPG
35. Logo AUD.JPG
18. Logo Eptisa.JPG